[1] S.A. Plotkin, Vaccines: past, present and future. Nat. Med. 11(4 Suppl), S5–S11 (2005).
[2] I. Delany, R. Rappuoli, E. De Gregorio, Vaccines for the 21st century. EMBO Mol. Med. 6, 708–720 (2014).
[3] D. Ndwandwe, C.S. Wiysonge, Covid-19 vaccines. Curr. Opin. Immunol. 71, 111–116 (2021).
[4] P. Zamani, J.G. Navashenaq, A.R. Nikpoor, M. Hatamipour, R.K. Oskuee et al., MPL nano-liposomal vaccine containing P5 HER2/neu-derived peptide pulsed PADRE as an effective vaccine in a mice TUBO model of breast cancer. J. Control. Release 303, 223–236 (2019).
[5] M.Z. Ahmad, J. Ahmad, A. Haque, M.Y. Alasmary, B.A. Abdel-Wahab et al., Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Rev. Vaccines 19, 1053–1071 (2020).
[6] K.L. Hess, I.L. Medintz, C.M. Jewell, Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27, 73–98 (2019).
[7] J. Chen, Z. Ye, C. Huang, M. Qiu, D. Song et al., Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8(+) T cell response. Proc. Natl. Acad. Sci. U.S.A. 119, e2207841119 (2022).
[8] A.M. Reichmuth, M.A. Oberli, A. Jaklenec, R. Langer, D. Blankschtein, mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 7, 319–334 (2016).
[9] A. Bolhassani, S. Javanzad, T. Saleh, M. Hashemi, M.R. Aghasadeghi et al., Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccin. Immunother. 10, 321–332 (2014).
[10] J. Han, D. Zhao, D. Li, X. Wang, Z. Jin et al., Polymer-based nanomaterials and applications for vaccines and drugs. Polymers 10, 31 (2018).
[11] R. Harrop, J. John, M.W. Carroll, Recombinant viral vectors: cancer vaccines. Adv. Drug Deliv. Rev. 58, 931–947 (2006).
[12] H. Wu, H. Li, Y. Liu, J. Liang, Q. Liu et al., Blockading a new NSCLC immunosuppressive target by pluripotent autologous tumor vaccines magnifies sequential immunotherapy. Bioact. Mater. 13, 223–238 (2021).
[13] X. Dong, Q. Yang, H. Wang, C. Zhu, T. Wang et al., Targetedly attenuating cancer stemness and plasticity by homologous cancer stem cell-inherited fusion membrane nanoeffectors against cancer metastasis. Small Sci. 4, 2300111 (2024).
[14] C. Feng, Y. Li, B.E. Ferdows, D.N. Patel, J. Ouyang et al., Emerging vaccine nanotechnology: from defense against infection to sniping cancer. Acta Pharm. Sin. B 12, 2206–2223 (2022).
[15] C.L. Chiang, L.E. Kandalaft, In vivo cancer vaccination: which dendritic cells to target and how? Cancer Treat. Rev. 71, 88–101 (2018).
[16] M. Saxena, S. Balan, V. Roudko, N. Bhardwaj, Towards superior dendritic-cell vaccines for cancer therapy. Nat. Biomed. Eng. 2, 341–346 (2018).
[17] X. Huang, X. Zhu, H. Yang, Q. Li, L. Gai et al., Nanomaterial delivery vehicles for the development of neoantigen tumor vaccines for personalized treatment. Molecules 29, 1462 (2024).
[18] T. Wang, M. Han, Y. Han, Z. Jiang, Q. Zheng et al., Antigen self-presented personalized nanovaccines boost the immunotherapy of highly invasive and metastatic tumors. ACS Nano 18, 6333–6347 (2024).
[19] H. Wang, X. Wu, Y. Sun, A. Liu, Y. He et al., A natural IgM hitchhiking strategy for delivery of cancer nanovaccines to splenic marginal zone B cells. J. Control. Release 368, 208–218 (2024).
[20] Y. Dölen, M. Valente, O. Tagit, E. Jäger, E.A.W. Van Dinther et al., Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 9, 1738813 (2020).
[21] A. Gül, M. Döşkaya, H. Can, M. Karakavuk, M. Anıl-İnevi et al., Immunogenicity of a xenogeneic multi-epitope HER2+ breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205. Vaccine 40, 2409–2419 (2022).
[22] L. Ma, L. Diao, Z. Peng, Y. Jia, H. Xie et al., Immunotherapy and prevention of cancer by nanovaccines loaded with whole-cell components of tumor tissues or cells. Adv. Mater. 33, 2104849 (2021).
[23] M. Saxena, S.H. van der Burg, C.J.M. Melief, N. Bhardwaj, Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).
[24] R.L. Atmar, W.A. Keitel, Searching for improved flu vaccines-the time is now. J. Infect. Dis. 221, 1–4 (2020).
[25] A.S. Bandyopadhyay, J. Garon, K. Seib, W.A. Orenstein, Polio vaccination: past, present and future. Future Microbiol. 10, 791–808 (2015).
[26] D.E. Griffin, Measles vaccine. Viral Immunol. 31, 86–95 (2018).
[27] A.M. Galazka, S.E. Robertson, A. Kraigher, Mumps and mumps vaccine: a global review. Bull. World Health Organ. 77, 3–14 (1999). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2557572/pdf/10063655.pdf
[28] N. Lambert, P. Strebel, W. Orenstein, J. Icenogle, G.A. Poland, Rubella. Lancet 385, 2297–2307 (2015).
[29] H. Zhao, X. Zhou, Y.-H. Zhou, Hepatitis B vaccine development and implementation. Hum. Vaccines Immunother. 16, 1533–1544 (2020).
[30] M. Stanley, Immunobiology of HPV and HPV vaccines. Gynecol. Oncol. 109, S15–S21 (2008).
[31] M. Li, H. Wang, L. Tian, Z. Pang, Q. Yang et al., COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct. Target. Ther. 7, 146 (2022).
[32] J. Liu, M. Fu, M. Wang, D. Wan, Y. Wei et al., Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J. Hematol. Oncol. 15, 28 (2022).
[33] H.C. Hoover Jr., M.G. Surdyke, R.B. Dangel, L.C. Peters, M.G. Hanna Jr., Prospectively randomized trial of adjuvant active-specific immunotherapy for human colorectal cancer. Cancer 55, 1236–1243 (1985). 10.1002/1097-0142(19850315)55:6<1236::AID-CNCR2820550616>3.0.CO;2-#
[34] P. van der Bruggen, C. Traversari, P. Chomez, C. Lurquin, E. De Plaen et al., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).
[35] T.A. Gardner, B.D. Elzey, N.M. Hahn, Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Hum. Vaccin. Immunother. 8, 534–539 (2012).
[36] K. Liang, Y. Sun, L. Xie, Y. Liu, Y. You et al., Biologically self-assembled tumor cell-derived cancer nanovaccines as an all-in-one platform for cancer immunotherapy. ACS Nano 18, 6702–6717 (2024).
[37] J. Pan, Y. Wang, C. Zhang, X. Wang, H. Wang et al., Antigen-directed fabrication of a multifunctional nanovaccine with ultrahigh antigen loading efficiency for tumor photothermal-immunotherapy. Adv. Mater. 30, 1704408 (2018).
[38] L.A. Dykman, Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev. Vaccines 19, 465–477 (2020).
[39] Y. Zhao, X. Zhao, Y. Cheng, X. Guo, W. Yuan, Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Mol. Pharm. 15, 1791–1799 (2018).
[40] X. Hong, X. Zhong, G. Du, Y. Hou, Y. Zhang et al., The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci. Adv. 6, eaaz4462 (2020).
[41] J. Sun, F. Liu, W. Yu, D. Fu, Q. Jiang et al., Visualization of vaccine dynamics with quantum dots for immunotherapy. Angew. Chem. Int. Ed. 60, 24275–24283 (2021).
[42] T. Wang, M. Zou, H. Jiang, Z. Ji, P. Gao et al., Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur. J. Pharm. Sci. 44, 653–659 (2011).
[43] X. Li, X. Wang, A. Ito, Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem. Soc. Rev. 47, 4954–4980 (2018).
[44] C.A. Bohannon, A.J. Chancellor, M.T. Kelly, T.T. Le, L. Zhu et al., Adaptable multivalent hairy inorganic nanoparticles. J. Am. Chem. Soc. 143, 16919–16924 (2021).
[45] T. Zhao, Y. Cai, Y. Jiang, X. He, Y. Wei et al., Vaccine adjuvants: mechanisms and platforms. Signal Transduct. Target. Ther. 8, 283 (2023).
[46] F. Soetaert, P. Korangath, D. Serantes, S. Fiering, R. Ivkov, Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv. Drug Deliv. Rev. 163–164, 65–83 (2020).
[47] S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi et al., Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994 (2016).
[48] G. Liu, J. Gao, H. Ai, X. Chen, Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9, 1533–1545 (2013).
[49] F.P. García de Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer et al., Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).
[50] R.E. Bailey, A.M. Smith, S. Nie, Quantum dots in biology and medicine. Phys. E Low Dimension. Syst. Nanostruct. 25, 1–12 (2004).
[51] V.G. Reshma, P.V. Mohanan, Quantum dots: applications and safety consequences. J. Lumin. 205, 287–298 (2019).
[52] N. Amonov, E.S. Ch, G. Abduraimova, Analysis of research on the properties, production and use of carbon nanoparticles. Miasto Przyszłości. 28, 136–138 (2022)
[53] B.J. Panessa-Warren, J.B. Warren, S.S. Wong, J.A. Misewich, Biological cellular response to carbon nanoparticle toxicity. J. Phys. Condens. Matter 18, S2185–S2201 (2006).
[54] S. Fiorito, A. Serafino, F. Andreola, A. Togna, G. Togna, Toxicity and biocompatibility of carbon nanoparticles. J. Nanosci. Nanotechnol. 6, 591–599 (2006).
[55] J. Ni, J. Song, B. Wang, H. Hua, H. Zhu et al., Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed. Pharmacother. 126, 110046 (2020).
[56] L. Huang, Y. Liao, C. Li, Z. Ma, Z. Liu, Multifunctional manganese-containing vaccine delivery system Ca@MnCO3/LLO for tumor immunotherapy. Biomater. Adv. 136, 212752 (2022).
[57] B. García-Pinel, C. Porras-Alcalá, A. Ortega-Rodríguez, F. Sarabia, J. Prados et al., Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials 9, 638 (2019).
[58] M.-G. Alameh, I. Tombácz, E. Bettini, K. Lederer, C. Sittplangkoon et al., Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877-2892.e7 (2021).
[59] J. Pardeike, A. Hommoss, R.H. Müller, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 366, 170–184 (2009).
[60] Y. Xia, S. Fu, Q. Ma, Y. Liu, N. Zhang, Application of nano-delivery systems in lymph nodes for tumor immunotherapy. Nano-Micro Lett. 15, 145 (2023).
[61] D. Sivadasan, K. Ramakrishnan, J. Mahendran, H. Ranganathan, A. Karuppaiah et al., Solid lipid nanoparticles: applications and prospects in cancer treatment. Int. J. Mol. Sci. 24, 6199 (2023).
[62] Y. Mirchandani, V.B. Patravale, S. Brijesh, Solid lipid nanoparticles for hydrophilic drugs. J. Control. Release 335, 457–464 (2021).
[63] V.J. Lingayat, N.S. Zarekar, R.S. Shendge, Solid lipid nanoparticles: a review. Nanosci. Nanotechnol. Res. 4, 67–72 (2017).
[64] A. Sharma, Nanocomposite materials for biomedical and energy storage applications. (BoD–Books on Demand; 2022).
[65] A. Beloqui, M.Á. Solinís, A. Rodríguez-Gascón, A.J. Almeida, V. Préat, Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomed. Nanotechnol. Biol. Med. 12, 143–161 (2016).
[66] M. Elmowafy, M.M. Al-Sanea, Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi Pharm. J. 29, 999–1012 (2021).
[67] H. Kang, S. Rho, W.R. Stiles, S. Hu, Y. Baek et al., Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater. 9, 1901223 (2020).
[68] R. Han, J. Zhu, X. Yang, H. Xu, Surface modification of poly(D, L-lactic-co-glycolic acid) nanoparticles with protamine enhanced cross-presentation of encapsulated ovalbumin by bone marrow-derived dendritic cells. J. Biomed. Mater. Res. A 96, 142–149 (2011).
[69] W.-S. Cho, F. Thielbeer, R. Duffin, E.M.V. Johansson, I.L. Megson et al., Surface functionalization affects the Zeta potential, coronal stability and membranolytic activity of polymeric nanoparticles. Nanotoxicology 8, 202–211 (2014).
[70] C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010).
[71] A. Gutjahr, C. Phelip, A.-L. Coolen, C. Monge, A.-S. Boisgard et al., Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccines 4, 34 (2016).
[72] M. Kumar, A.K. Behera, R.F. Lockey, J. Zhang, G. Bhullar et al., Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum. Gene Ther. 13, 1415–1425 (2002).
[73] M. Iqbal, W. Lin, I. Jabbal-Gill, S.S. Davis, M.W. Steward et al., Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine 21, 1478–1485 (2003).
[74] E.C. Carroll, L. Jin, A. Mori, N. Muñoz-Wolf, E. Oleszycka et al., The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44, 597–608 (2016).
[75] K.H. Wong, A. Lu, X. Chen, Z. Yang, Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules 25, 3620 (2020).
[76] J.I. Bussio, C. Molina-Perea, J.V. González-Aramundiz, Hyaluronic acid nanocapsules as a platform for needle-free vaccination. Pharmaceutics 11, 246 (2019).
[77] J. Yang, Y. Luo, M.A. Shibu, I. Toth, M. Skwarczynskia, Cell-penetrating peptides: efficient vectors for vaccine delivery. Curr. Drug Deliv. 16, 430–443 (2019).
[78] Q. Liu, J. Jia, T. Yang, Q. Fan, L. Wang et al., Pathogen-mimicking polymeric nanoparticles based on dopamine polymerization as vaccines adjuvants induce robust humoral and cellular immune responses. Small 12, 1744–1757 (2016).
[79] Q. Su, C. Wang, H. Song, C. Zhang, J. Liu et al., Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy. J. Mater. Chem. B 9, 3892–3899 (2021).
[80] Y. Gao, Y. Liu, X. Li, H. Wang, Y. Yang et al., A stable open-shell conjugated diradical polymer with ultra-high photothermal conversion efficiency for NIR-II photo-immunotherapy of metastatic tumor. Nano-Micro Lett. 16, 21 (2023).
[81] T. Lima, K. Bernfur, M. Vilanova, T. Cedervall, Understanding the lipid and protein Corona formation on different sized polymeric nanoparticles. Sci. Rep. 10, 1129 (2020).
[82] J.A. Jackman, B.K. Yoon, L. Ouyang, W. Nan, A.R. Ferhan et al., Biomimetic nanomaterial strategies for virus targeting: antiviral therapies and vaccines. Adv. Funct. Mater. 31, 2008352 (2021).
[83] K.G. Gareev, D.S. Grouzdev, V.V. Koziaeva, N.O. Sitkov, H. Gao et al., Biomimetic nanomaterials: diversity, technology, and biomedical applications. Nanomaterials 12, 2485 (2022).
[84] C. Feng, P. Tan, G. Nie, M. Zhu, Biomimetic and bioinspired nano-platforms for cancer vaccine development. Exploration (Beijing) 3, 20210263 (2023).
[85] J. Su, H. Sun, Q. Meng, Q. Yin, S. Tang et al., Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 30, 1910229 (2020).
[86] M. Xuan, J. Shao, J. Zhao, Q. Li, L. Dai et al., Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: applications in cancer therapy. Angew. Chem. Int. Ed. 57, 6049–6053 (2018).
[87] J. Li, S. Wang, X. Lin, Y. Cao, Z. Cai et al., Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nano-Micro Lett. 14, 57 (2022).
[88] Z.-B. Wang, J. Xu, Better adjuvants for better vaccines: progress in adjuvant delivery systems, modifications, and adjuvant-antigen codelivery. Vaccines 8, 128 (2020).
[89] J. Xia, Y. Miao, X. Wang, X. Huang, J. Dai, Recent progress of dendritic cell-derived exosomes (Dex) as an anti-cancer nanovaccine. Biomed. Pharmacother. 152, 113250 (2022).
[90] M. Fan, H. Liu, H. Yan, R. Che, Y. Jin et al., A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials 282, 121424 (2022).
[91] M. Wu, W. Wu, Y. Duan, X. Li, G. Qi et al., Photosensitizer-bacteria biohybrids promote photodynamic cancer cell ablation and intracellular protein delivery. Chem. Mater. 31, 7212–7220 (2019).
[92] Q. Hu, M. Wu, C. Fang, C. Cheng, M. Zhao et al., Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15, 2732–2739 (2015).
[93] J. Chen, C.-Q. Sheng, C.-H. Zheng, Y.-W. Li, J.-G. Lv et al., Study of properties of VEGFR2 active site and binding mode of VEGFR2 and its inhibitors. Acta Chim. Sinica 65, 547 (2007)
[94] Z. Ye, L. Liang, H. Lu, Y. Shen, W. Zhou et al., Nanotechnology-employed bacteria-based delivery strategy for enhanced anticancer therapy. Int. J. Nanomedicine 16, 8069–8086 (2021).
[95] C.-J. Chiang, P.-H. Huang, Metabolic engineering of probiotic Escherichia coli for cytolytic therapy of tumors. Sci. Rep. 11, 5853 (2021).
[96] S. Dai, H. Wang, F. Deng, Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. J. Immunol. Sci. 2, 36–41 (2018). https://www.immunologyresearchjournal.com/articles/advances-and-challenges-in-enveloped-viruslike-particle-vlpbased-vaccines.pdf
[97] J.C. Caldeira, M. Perrine, F. Pericle, F. Cavallo, Virus-like particles as an immunogenic platform for cancer vaccines. Viruses 12, 488 (2020).
[98] E. Tumban, P. Muttil, C.A.A. Escobar, J. Peabody, D. Wafula et al., Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2. Vaccine 33, 3346–3353 (2015).
[99] F.-X. Ding, F. Wang, Y.-M. Lu, K. Li, K.-H. Wang et al., Multiepitope peptide-loaded virus-like particles as a vaccine against hepatitis B virus-related hepatocellular carcinoma. Hepatology 49, 1492–1502 (2009).
[100] H. Ali, M. Akbar, B. Iqbal, F. Ali, N.K. Sharma et al., Virosome: an engineered virus for vaccine delivery. Saudi Pharm. J. 31, 752–764 (2023).
[101] U. Wiedermann, C. Wiltschke, J. Jasinska, M. Kundi, R. Zurbriggen et al., A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase i study. Breast Cancer Res. Treat. 119, 673–683 (2010).
[102] R. Tenchov, R. Bird, A.E. Curtze, Q. Zhou, Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021).
[103] Y. Yang, T. Yang, F. Chen, C. Zhang, B. Yin et al., Degradable magnetic nanoplatform with hydroxide ions triggered photoacoustic, MR imaging, and photothermal conversion for precise cancer theranostic. Nano Lett. 22, 3228–3235 (2022).
[104] J. Li, X. Chang, X. Chen, Z. Gu, F. Zhao et al., Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol. Adv. 32, 727–743 (2014).
[105] S.J. Soenen, P. Rivera-Gil, J.-M. Montenegro, W.J. Parak, S.C. De Smedt et al., Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, 446–465 (2011).
[106] F. Jia, W. Huang, Y. Yin, Y. Jiang, Q. Yang et al., Stabilizing RNA nanovaccines with transformable hyaluronan dynamic hydrogel for durable cancer immunotherapy. Adv. Funct. Mater. 33, 2204636 (2023).
[107] K.S. Corbett, D.K. Edwards, S.R. Leist, O.M. Abiona, S. Boyoglu-Barnum et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020).
[108] M.N. Uddin, M.A. Roni, Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines 9, 1033 (2021).
[109] H. Muramatsu, K. Lam, C. Bajusz, D. Laczkó, K. Karikó et al., Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 30, 1941–1951 (2022).
[110] Y. Gu, J. Duan, N. Yang, Y. Yang, X. Zhao, mRNA vaccines in the prevention and treatment of diseases. MedComm 3, e167 (2022).
[111] C. Vasile, Polymeric nanomaterials: recent developments, properties and medical applications [B]. Polymeric nanomaterials in nanotherapeutics, Micro & Nano Technologies. (2019), p. 1–66.
[112] T.T. Spear, K. Nagato, M.I. Nishimura, Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol. Immunother. 65, 631–649 (2016).
[113] M. Kreutz, B. Giquel, Q. Hu, R. Abuknesha, S. Uematsu et al., Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in Cis but only have partial targeting specificity. PLoS ONE 7, e40208 (2012).
[114] M. Yadav, S. Jhunjhunwala, Q.T. Phung, P. Lupardus, J. Tanguay et al., Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).
[115] Q. Zhao, X. Dong, C. Zhu, Y. Zhang, C. Fang et al., DNA damage-encouraged Mn-As-based nanoreactors reshape intratumoral cell phenotypes to recover immune surveillance and potentiate anti-tumor immunity. Chem. Eng. J. 474, 145556 (2023).
[116] M. Sarikaya, C. Tamerler, A.K.-Y. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003).
[117] X. Liang, Y. Zhang, J. Zhou, Z. Bu, J. Liu et al., Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord. Chem. Rev. 473, 214824 (2022).
[118] R.M. Steinman, Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012).
[119] K. Liu, M.C. Nussenzweig, Origin and development of dendritic cells. Immunol. Rev. 234, 45–54 (2010).
[120] L. Wu, Y.-J. Liu, Development of dendritic-cell lineages. Immunity 26, 741–750 (2007).
[121] R.M. Steinman, M. Pack, K. Inaba, Dendritic cell development and maturation. Adv. Exp. Med. Biol. 417, 1–6 (1997).
[122] L.E. Paulis, S. Mandal, M. Kreutz, C.G. Figdor, Dendritic cell-based nanovaccines for cancer immunotherapy. Curr. Opin. Immunol. 25, 389–395 (2013).
[123] C. Macri, M. Paxman, D. Jenika, X.P. Lin, Z. Elahi et al., FcRn regulates antigen presentation in dendritic cells downstream of DEC205-targeted vaccines. npj Vaccines 9, 76 (2024).
[124] Y. van Kooyk, G.A. Rabinovich, Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008).
[125] M. Kreutz, P.J. Tacken, C.G. Figdor, Targeting dendritic cells: why bother? Blood 121, 2836–2844 (2013).
[126] M. Tanaka, M. Saka-Tanaka, K. Ochi, K. Fujieda, Y. Sugiura et al., C-type lectin Mincle mediates cell death-triggered inflammation in acute kidney injury. J. Exp. Med. 217, e20192230 (2020).
[127] J.M. Jaynes, R. Sable, M. Ronzetti, W. Bautista, Z. Knotts et al., Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci. Transl. Med. 12, eaax6337 (2020).
[128] M.H. Lahoud, F. Ahmet, J.-G. Zhang, S. Meuter, A.N. Policheni et al., Dec-205 is a cell surface receptor for cpg oligonucleotides. Proc. Natl. Acad. Sci. U.S.A. 109, 16270–16275 (2012).
[129] C. Petzold, S. Schallenberg, J.N.H. Stern, K. Kretschmer, Targeted antigen delivery to DEC-205⁺ dendritic cells for tolerogenic vaccination. Rev. Diabet. Stud. 9, 305–318 (2012).
[130] M. Guo, S. Gong, S. Maric, Z. Misulovin, M. Pack et al., A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Hum. Immunol. 61, 729–738 (2000).
[131] M.O. Silva, B.S. Almeida, N.S. Sales, M.O. Diniz, L.R.M.M. Aps et al., Antigen delivery to DEC205+ dendritic cells induces immunological memory and protective therapeutic effects against HPV-associated tumors at different anatomical sites. Int. J. Biol. Sci. 17, 2944–2956 (2021).
[132] C.D. Phung, T.H. Tran, H.T. Nguyen, T.T. Nguyen, J.H. Jeong et al., Nanovaccines silencing IL-10 production at priming phase for boosting immune responses to melanoma. J. Control. Release 338, 211–223 (2021).
[133] B.E. Clausen, P. Stoitzner, Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front. Immunol. 6, 534 (2015).
[134] C.G. Figdor, Y. van Kooyk, G.J. Adema, C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2, 77–84 (2002).
[135] S.W. Kashem, M. Haniffa, D.H. Kaplan, Antigen-presenting cells in the skin. Annu. Rev. Immunol. 35, 469–499 (2017).
[136] L. Bellmann, H. Strandt, C. Zelle-Rieser, D. Ortner, C.H. Tripp et al., Targeted delivery of a vaccine protein to Langerhans cells in the human skin via the C-type lectin receptor Langerin. Eur. J. Immunol. 52, 1829–1841 (2022).
[137] G. Schreibelt, L.J. Klinkenberg, L.J. Cruz, P.J. Tacken, J. Tel et al., The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-) presentation by human blood BDCA3+ myeloid dendritic cells. Blood 119, 2284–2292 (2012).
[138] S. Gou, S. Wang, W. Liu, G. Chen, D. Zhang et al., Adjuvant-free peptide vaccine targeting Clec9a on dendritic cells can induce robust antitumor immune response through Syk/IL-21 axis. Theranostics 11, 7308–7321 (2021).
[139] F.E. Pearson, K.M. Tullett, I.M. Leal-Rojas, O.L. Haigh, K.-A. Masterman et al., Human CLEC9A antibodies deliver Wilms’ tumor 1 (WT1) antigen to CD141+ dendritic cells to activate naïve and memory WT1-specific CD8+ T cells. Clin. Transl. Immunology 9, e1141 (2020).
[140] J. Huang, J. Zhou, R. Ghinnagow, T. Seki, S. Iketani et al., Targeted co-delivery of tumor antigen and α-galactosylceramide to CD141+ dendritic cells induces a potent tumor antigen-specific human CD8+ T cell response in human immune system mice. Front. Immunol. 11, 2043 (2020).
[141] X. Feng, D. Liu, Z. Li, J. Bian, Bioactive modulators targeting STING adaptor in cGAS-STING pathway. Drug Discov. Today 25, 230–237 (2020).
[142] Y. Zhu, X. An, X. Zhang, Y. Qiao, T. Zheng et al., STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18, 152 (2019).
[143] S. Gou, W. Liu, S. Wang, G. Chen, Z. Chen et al., Engineered nanovaccine targeting Clec9a+ dendritic cells remarkably enhances the cancer immunotherapy effects of STING agonist. Nano Lett. 21, 9939–9950 (2021).
[144] M. Matsumoto, T. Tanaka, T. Kaisho, H. Sanjo, N.G. Copeland et al., A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J. Immunol. 163, 5039–5048 (1999).
[145] X. Luo, Q. Lian, W. Li, L. Chen, R. Zhang et al., Fully synthetic Mincle-dependent self-adjuvanting cancer vaccines elicit robust humoral and T cell-dependent immune responses and protect mice from tumor development. Chem. Sci. 12, 15998–16013 (2021).
[146] E.M. Dangerfield, S. Ishizuka, K. Kodar, S. Yamasaki, M.S.M. Timmer et al., Chimeric NOD2 mincle agonists as vaccine adjuvants. J. Med. Chem. 67, 5373–5390 (2024).
[147] P.R. Taylor, S. Gordon, L. Martinez-Pomares, The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol. 26, 104–110 (2005).
[148] H.J.P. van der Zande, D. Nitsche, L. Schlautmann, B. Guigas, S. Burgdorf, The mannose receptor: from endocytic receptor and biomarker to regulator of (meta)inflammation. Front. Immunol. 12, 765034 (2021).
[149] G. Moku, S. Vangala, S.K. Gulla, V. Yakati, In vivo targeting of DNA vaccines to dendritic cells via the mannose receptor induces long-lasting immunity against melanoma. ChemBioChem 22, 523–531 (2021).
[150] J. Chen, H. Fang, Y. Hu, J. Wu, S. Zhang et al., Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioact. Mater. 7, 167–180 (2021).
[151] M. Vasquez, I. Simões, M. Consuegra-Fernández, F. Aranda, F. Lozano et al., Exploiting scavenger receptors in cancer immunotherapy: lessons from CD5 and SR-B1. Eur. J. Immunol. 47, 1108–1118 (2017).
[152] Y. Qian, H. Jin, S. Qiao, Y. Dai, C. Huang et al., Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials 98, 171–183 (2016).
[153] W.-J. Shen, S. Azhar, F.B. Kraemer, SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018).
[154] L. Oliveira-Nascimento, P. Massari, L.M. Wetzler, The role of TLR2 in infection and immunity. Front. Immun. 3, 79 (2012).
[155] X. Zhao, R. Zhao, G. Nie, Nanocarriers based on bacterial membrane materials for cancer vaccine delivery. Nat. Protoc. 17, 2240–2274 (2022).
[156] N. Garçon, M. Van Mechelen, Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines 10, 471–486 (2011).
[157] E. Vercammen, J. Staal, R. Beyaert, Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin. Microbiol. Rev. 21, 13–25 (2008).
[158] R.A. Robinson, V.T. DeVita, H.B. Levy, S. Baron, S.P. Hubbard et al., A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J. Natl. Cancer Inst. 57, 599–602 (1976).
[159] A.M. Salazar, H.B. Levy, S. Ondra, M. Kende, B. Scherokman et al., Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 38, 1096–1103 (1996).
[160] N. Butowski, K.R. Lamborn, B.L. Lee, M.D. Prados, T. Cloughesy et al., A North American brain tumor consortium phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas. J. Neurooncol 91, 183–189 (2009).
[161] H. Okada, P. Kalinski, R. Ueda, A. Hoji, G. Kohanbash et al., Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with{alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29, 330–336 (2011).
[162] M.V. Dhodapkar, M. Sznol, B. Zhao, D. Wang, R.D. Carvajal et al., Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med. 6, 23251 (2014).
[163] B.B. Gowen, M.-H. Wong, K.-H. Jung, A.B. Sanders, W.M. Mitchell et al., TLR3 is essential for the induction of protective immunity against Punta toro virus infection by the double-stranded RNA (dsRNA), poly(I: C12U), but not poly(I: C): differential recognition of synthetic dsRNA molecules. J. Immunol. 178, 5200–5208 (2007).
[164] K.A. Thompson, D.R. Strayer, P.D. Salvato, C.E. Thompson, N. Klimas et al., Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI: PolyC12U in the treatment of HIV infection. Eur. J. Clin. Microbiol. Infect. Dis. 15, 580–587 (1996).
[165] T. Kaisho, S. Akira, Regulation of dendritic cell function through toll-like receptors. Curr. Mol. Med. 3, 759–771 (2003).
[166] H. Fang, B. Ang, X. Xu, X. Huang, Y. Wu et al., TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. Cell. Mol. Immunol. 11, 150–159 (2014).
[167] H. Zhang, X. You, X. Wang, L. Cui, Z. Wang et al., Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proc. Natl. Acad. Sci. U.S.A. 118, e2005191118 (2021).
[168] J.H. Fritz, S.E. Girardin, C. Fitting, C. Werts, D. Mengin-Lecreulx et al., Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol. 35, 2459–2470 (2005).
[169] S.I. Gringhuis, J. den Dunnen, M. Litjens, B. van Het Hof, Y. van Kooyk et al., C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-B. Immunity 26, 605–616 (2007).
[170] D. Yang, X. Luo, Q. Lian, L. Gao, C. Wang et al., Fully synthetic Tn-based three-component cancer vaccine using covalently linked TLR4 ligand MPLA and iNKT cell agonist KRN-7000 as built-in adjuvant effectively protects mice from tumor development. Acta Pharm. Sin. B 12, 4432–4445 (2022).
[171] T.C. Albershardt, J. Leleux, A.J. Parsons, J.E. Krull, P. Berglund et al., Intratumoral immune activation with TLR4 agonist synergizes with effector T cells to eradicate established murine tumors. npj Vaccines 5, 50 (2020).
[172] J.J. Baljon, A.J. Kwiatkowski, H.M. Pagendarm, P.T. Stone, A. Kumar et al., A cancer nanovaccine for co-delivery of peptide neoantigens and optimized combinations of STING and TLR4 agonists. ACS Nano 18, 6845–6862 (2024).
[173] N. Kuzmich, K. Sivak, V. Chubarev, Y. Porozov, T. Savateeva-Lyubimova et al., TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines 5, 34 (2017).
[174] K. Crozat, B. Beutler, Tlr7: a new sensor of viral infection. Proc. Natl. Acad. Sci. U.S.A. 101, 6835–6836 (2004).
[175] H. Xia, M. Qin, Z. Wang, Y. Wang, B. Chen et al., A pH-/ enzyme-responsive nanoparticle selectively targets endosomal toll-like receptors to potentiate robust cancer vaccination. Nano Lett. 22, 2978–2987 (2022).
[176] M. Liu, Y. Feng, Y. Lu, R. Huang, Y. Zhang et al., Lymph-targeted high-density lipoprotein-mimetic nanovaccine for multi-antigenic personalized cancer immunotherapy. Sci. Adv. 10, eadk2444 (2024).
[177] C. Rolfo, E. Giovannetti, P. Martinez, S. McCue, A. Naing, Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. npj Precis. Oncol. 7, 26 (2023).
[178] B.-D. Zhang, J.-J. Wu, W.-H. Li, H.-G. Hu, L. Zhao et al., STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation. Nano Res. 15, 6328–6339 (2022).
[179] N. Wang, G. Zhang, P. Zhang, K. Zhao, Y. Tian et al., Vaccination of TLR7/8 agonist-conjugated antigen nanoparticles for cancer immunotherapy. Adv. Healthcare Mater. 12, 2300249 (2023).
[180] Y. Kumagai, O. Takeuchi, S. Akira, Tlr9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev. 60, 795–804 (2008).
[181] P. Chen, D. Wang, Y. Wang, L. Zhang, Q. Wang et al., Maximizing TLR9 activation in cancer immunotherapy with dual-adjuvanted spherical nucleic acids. Nano Lett. 22, 4058–4066 (2022).
[182] Y. Wang, S.-L. Qiao, J. Wang, M.-Z. Yu, N.-N. Wang et al., Engineered CpG-loaded nanorobots drive autophagy-mediated immunity for TLR9-positive cancer therapy. Adv. Mater. 36, e2306248 (2024).
[183] Y. Ma, L. Galluzzi, L. Zitvogel, G. Kroemer, Autophagy and cellular immune responses. Immunity 39, 211–227 (2013).
[184] G.B. Mackaness, R.V. Blanden, Cellular immunity. Prog. Allergy 11, 89–140 (1967).
[185] J. Zhang, B. Fan, G. Cao, W. Huang, F. Jia et al., Direct presentation of tumor-associated antigens to induce adaptive immunity by personalized dendritic cell-mimicking nanovaccines. Adv. Mater. 34, e2205950 (2022).
[186] C. Liu, X. Liu, X. Xiang, X. Pang, S. Chen et al., A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022).
[187] K. Wang, X. Zhang, H. Ye, X. Wang, Z. Fan et al., Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy. Nat. Commun. 14, 6748 (2023).
[188] A. Fusco, M. Fedele, Roles of HMGA proteins in cancer. Nat. Rev. Cancer 7, 899–910 (2007).
[189] M.J. van de Vijver, J.L. Peterse, W.J. Mooi, P. Wisman, J. Lomans et al., Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. New Engl. J. Med. 319, 1239–1245 (1988).
[190] J.B. Welsh, L.M. Sapinoso, S.G. Kern, D.A. Brown, T. Liu et al., Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc. Natl. Acad. Sci. U.S.A. 100, 3410–3415 (2003).
[191] K.R. Kampen, Membrane proteins: the key players of a cancer cell. J. Membr. Biol. 242, 69–74 (2011).
[192] E. de Jong, A. Kocer, Current methods for identifying plasma membrane proteins as cancer biomarkers. Membranes 13, 409 (2023).
[193] D. Grimm, J. Bauer, J. Pietsch, M. Infanger, J. Eucker et al., Diagnostic and therapeutic use of membrane proteins in cancer cells. Curr. Med. Chem. 18, 176–190 (2011).
[194] J.F. Curtin, N. Liu, M. Candolfi, W. Xiong, H. Assi et al., HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med. 6, e10 (2009).
[195] E. Vénéreau, C. Ceriotti, M.E. Bianchi, DAMPs from cell death to new life. Front. Immunol. 6, 422 (2015).
[196] T. Yamazaki, D. Hannani, V. Poirier-Colame, S. Ladoire, C. Locher et al., Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 21, 69–78 (2014).
[197] I.E. Dumitriu, M.E. Bianchi, M. Bacci, A.A. Manfredi, P. Rovere-Querini, The secretion of HMGB1 is required for the migration of maturing dendritic cells. J. Leukoc. Biol. 81, 84–91 (2007).
[198] E. Berney, N. Sabnis, M. Panchoo, S. Raut, R. Dickerman et al., The SR-B1 receptor as a potential target for treating glioblastoma. J. Oncol. 2019, 1805841 (2019).
[199] P. Kadiyala, D. Li, F.M. Nuñez, D. Altshuler, R. Doherty et al., High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 13, 1365–1384 (2019).
[200] L. Bello, M. Francolini, P. Marthyn, J. Zhang, R.S. Carroll et al., αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery 49, 380–389 (2001).
[201] C. Böger, V.S. Warneke, H.-M. Behrens, H. Kalthoff, S.L. Goodman et al., Integrins αvβ3 and αvβ5 as prognostic, diagnostic, and therapeutic targets in gastric cancer. Gastric Cancer 18, 784–795 (2015).
[202] T. Hurtado de Mendoza, E.S. Mose, G.P. Botta, G.B. Braun, V.R. Kotamraju et al., Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat. Commun. 12, 1541 (2021).
[203] N. Ding, Z. Zou, H. Sha, S. Su, H. Qian et al., iRGD synergizes with PD-1 knockout immunotherapy by enhancing lymphocyte infiltration in gastric cancer. Nat. Commun. 10, 1336 (2019).
[204] S. Zhou, F. Meng, S. Du, H. Qian, N. Ding et al., Bifunctional iRGD-anti-CD3 enhances antitumor potency of T cells by facilitating tumor infiltration and T-cell activation. J. Immunother. Cancer 9, e001925 (2021).
[205] Y. Song, M. Xu, Y. Li, Y. Li, W. Gu et al., An iRGD peptide fused superantigen mutant induced tumor-targeting and T lymphocyte infiltrating in cancer immunotherapy. Int. J. Pharm. 586, 119498 (2020).
[206] T. Mitsudomi, Y. Yatabe, Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 277, 301–308 (2010).
[207] D.A. Sabbah, R. Hajjo, K. Sweidan, Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem. 20, 815–834 (2020).
[208] A. De Luca, A. Carotenuto, A. Rachiglio, M. Gallo, M.R. Maiello et al., The role of the EGFR signaling in tumor microenvironment. J. Cell. Physiol. 214, 559–567 (2008).
[209] Q. Cheng, X. Shi, M. Han, G. Smbatyan, H.-J. Lenz et al., Reprogramming exosomes as nanoscale controllers of cellular immunity. J. Am. Chem. Soc. 140, 16413–16417 (2018).
[210] G. Lammering, T.H. Hewit, W.T. Hawkins, J.N. Contessa, D.B. Reardon et al., Epidermal growth factor receptor as a genetic therapy target for carcinoma cell radiosensitization. J. Natl. Cancer Inst. 93, 921–929 (2001).
[211] M.S. Alghamri, K. Banerjee, A.A. Mujeeb, A. Mauser, A. Taher et al., Systemic delivery of an adjuvant CXCR4-CXCL12 signaling inhibitor encapsulated in synthetic protein nanoparticles for glioma immunotherapy. ACS Nano 16, 8729–8750 (2022).
[212] D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).
[213] P. Sharma, J.P. Allison, The future of immune checkpoint therapy. Science 348, 56–61 (2015).
[214] P. Sharma, J.P. Allison, Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020).
[215] J.M. Fritz, M.J. Lenardo, Development of immune checkpoint therapy for cancer. J. Exp. Med. 216, 1244–1254 (2019).
[216] S. Chikuma. CTLA-4, an essential immune-checkpoint for T-cell activation. Current Topics in Microbiology and Immunology. (Springer International Publishing, 2017), pp. 99–126.
[217] J.B.A.G. Haanen, C. Robert, Immune checkpoint inhibitors. Progress in Tumor Research. S. Karger AG, (2015), pp. 55–66
[218] C. Peres, A.I. Matos, B. Carreira, L.I.F. Moura, R. Kleiner et al., Multifunctional nanovaccine sensitizes breast cancer to immune checkpoint therapy. Adv. Funct. Mater. 34, 2401749 (2024).
[219] P. Zhao, Y. Xu, W. Ji, L. Li, L. Qiu et al., Hybrid membrane nanovaccines combined with immune checkpoint blockade to enhance cancer immunotherapy. Int. J. Nanomedicine 17, 73–89 (2022).
[220] H. Liu, H. Chen, Z. Liu, Z. Le, T. Nie et al., Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials 255, 120158 (2020).
[221] C. Li, R. Clauson, L.F. Bugada, F. Ke, B. He et al., Antigen-clustered nanovaccine achieves long-term tumor remission by promoting B/CD 4 T cell crosstalk. ACS Nano 18, 9584–9604 (2024).
[222] R.E. Hollingsworth, K. Jansen, Turning the corner on therapeutic cancer vaccines. npj Vaccines 4, 7 (2019).
[223] T. Jiang, T. Shi, H. Zhang, J. Hu, Y. Song et al., Tumor neoantigens: from basic research to clinical applications. J. Hematol. Oncol. 12, 93 (2019).
[224] A. Sette, S. Crotty, Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184, 861–880 (2021).
[225] J.S. Heitmann, T. Bilich, C. Tandler, A. Nelde, Y. Maringer et al., A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature 601, 617–622 (2022).
[226] R. Keeton, M.B. Tincho, A. Ngomti, R. Baguma, N. Benede et al., T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488–492 (2022).
[227] A. Tarke, C.H. Coelho, Z. Zhang, J.M. Dan, E.D. Yu et al., SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847-859.e11 (2022).
[228] Z. Zhang, J. Mateus, C.H. Coelho, J.M. Dan, C.R. Moderbacher et al., Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185, 2434-2451.e17 (2022).
[229] A.M. Scott, J.D. Wolchok, L.J. Old, Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012).
[230] V.R. Gómez Román, J.C. Murray, L.M. Weiner, Antibody-dependent cellular cytotoxicity (ADCC). Antibody Fc. (Elsevier, 2014), pp. 1–27.
[231] M.Z. Tay, K. Wiehe, J. Pollara, Antibody-dependent cellular phagocytosis in antiviral immune responses. Front. Immunol. 10, 332 (2019).
[232] D. Gancz, Z. Fishelson, Cancer resistance to complement-dependent cytotoxicity (CDC): problem-oriented research and development. Mol. Immunol. 46, 2794–2800 (2009).
[233] B.A. Helmink, S.M. Reddy, J. Gao, S. Zhang, R. Basar et al., B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).
[234] S.S. Kim, W.A. Sumner, S. Miyauchi, E.E.W. Cohen, J.A. Califano et al., Role of B cells in responses to checkpoint blockade immunotherapy and overall survival of cancer patients. Clin. Cancer Res. 27, 6075–6082 (2021).
[235] D.A. Barth, S. Stanzer, J.A. Spiegelberg, T. Bauernhofer, G. Absenger et al., Patterns of peripheral blood B-cell subtypes are associated with treatment response in patients treated with immune checkpoint inhibitors: a prospective longitudinal pan-cancer study. Front. Immunol. 13, 840207 (2022).
[236] F. Petitprez, A. de Reyniès, E.Z. Keung, T.W.-W. Chen, C.-M. Sun et al., B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).
[237] V. Trujillo-Alonso, E.C. Pratt, H. Zong, A. Lara-Martinez, C. Kaittanis et al., FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol. 14, 616–622 (2019).
[238] P. Xie, S.T. Yang, Y. Huang, C. Zeng, Q. Xin et al., Carbon nanoparticles-Fe(II) complex for efficient tumor inhibition with low toxicity by amplifying oxidative stress. ACS Appl. Mater. Interfaces 12(26), 29094–29102 (2020).
[239] Y.H. Ko, EBV and human cancer. Exp. Mol. Med. 47, e130 (2015).
[240] D. Srikrishna, K. Sachsenmeier, We need to bring R0 < 1 to treat cancer too. Genome Med. 13, 120 (2021).
[241] D. Sarker, R. Plummer, T. Meyer, M.H. Sodergren, B. Basu et al., MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clin. Cancer Res. 26, 3936–3946 (2020).
[242] N. Hilf, S. Kuttruff-Coqui, K. Frenzel, V. Bukur, S. Stevanović et al., Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).
[243] S.N. Bhatia, X. Chen, M.A. Dobrovolskaia, T. Lammers, Cancer nanomedicine. Nat. Rev. Cancer 22, 550–556 (2022).
[244] T.A. Qiu, M.J. Gallagher, N.V. Hudson-Smith, J. Wu, M.O.P. Krause et al., Research highlights: unveiling the mechanisms underlying nanoparticle-induced ROS generation and oxidative stress. Environ. Sci. Nano 3, 940–945 (2016).
[245] S.E. Lehman, A.S. Morris, P.S. Mueller, A.K. Salem, V.H. Grassian et al., Silica nanoparticle-generated ROS as a predictor of cellular toxicity: mechanistic insights and safety by design. Environ. Sci. Nano 3, 56–66 (2016).
[246] Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6, 5164–5173 (2012).
[247] D. Bitounis, E. Jacquinet, M.A. Rogers, M.M. Amiji, Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat. Rev. Drug Discov. 23, 281–300 (2024).
[248] J. Xu, D.H.C. Wong, J.D. Byrne, K. Chen, C. Bowerman et al., Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. 52, 6580–6589 (2013).
[249] J.-M. Lim, A. Swami, L.M. Gilson, S. Chopra, S. Choi et al., Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 8, 6056–6065 (2014).
[250] D. Wang, M. Zhang, Y. Zhang, G. Qiu, J. Chen et al., Intraparticle double-scattering-decoded sonogenetics for augmenting immune checkpoint blockade and CAR-T therapy. Adv. Sci. 9, e2203106 (2022).
[251] L. Lei, S. Cai, Y. Zhang, L. Yang, J. Deng et al., Structure inversion-bridged sequential amino acid metabolism disturbance potentiates photodynamic-evoked immunotherapy. Adv. Funct. Mater. 32, 2103394 (2022).
[252] H. Zhou, C. Zhu, Q. Zhao, J. Ni, H. Zhang et al., Wrecking neutrophil extracellular traps and antagonizing cancer-associated neurotransmitters by interpenetrating network hydrogels prevent postsurgical cancer relapse and metastases. Bioact. Mater. 39, 14–24 (2024).
[253] D. Wang, M. Zhang, G. Qiu, C. Rong, X. Zhu et al., Extracellular matrix viscosity reprogramming by in situ Au bioreactor-boosted microwavegenetics disables tumor escape in CAR-T immunotherapy. ACS Nano 17, 5503–5516 (2023).
[254] X. Dong, H. Liu, C. Fang, Y. Zhang, Q. Yang et al., Sonocatalytic on colysis microbiota curb intrinsic microbiota lactate metabolism and blockade CD24-Siglec10 immune escape to revitalize immunological surveillance. Biomaterials 311, 122662 (2024).
[255] R. Jiao, X. Lin, Q. Zhang, Y. Zhang, W. Qin et al., Anti-tumor immune potentiation targets-engineered nanobiotechnologies: design principles and applications. Prog. Mater. Sci. 142, 101230 (2024).
[256] C. Fang, G. Xiao, T. Wang, L. Song, B. Peng et al., Emerging nano-/ biotechnology drives oncolytic virus-activated and combined cancer immunotherapy. Research (Wash D C) 6, 0108 (2023).