• Nano-Micro Letters
  • Vol. 16, Issue 1, 211 (2024)
Yilin Sun1,*, Huaipeng Wang2, and Dan Xie2,**
Author Affiliations
  • 1School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
  • 2School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01445-x Cite this Article
    Yilin Sun, Huaipeng Wang, Dan Xie. Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications[J]. Nano-Micro Letters, 2024, 16(1): 211 Copy Citation Text show less
    References

    [1] S. Wang, D.W. Zhang, P. Zhou, Two-dimensional materials for synaptic electronics and neuromorphic systems. Sci. Bull. 64, 1056–1066 (2019).

    [2] Q. Wan, M.T. Sharbati, J.R. Erickson, Y. Du, F. Xiong, Emerging artificial synaptic devices for neuromorphic computing. Adv. Mater. Technol. 4, 1900037 (2019).

    [3] K. Lu, X. Li, Q. Sun, X. Pang, J. Chen et al., Solution-processed electronics for artificial synapses. Mater. Horiz. 8, 447–470 (2021).

    [4] L. Sun, W. Wang, H. Yang, Recent progress in synaptic devices based on 2D materials. Adv. Intell. Syst. 2, 1900167 (2020).

    [5] G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31, 2005443 (2021).

    [6] X. Zou, S. Xu, X. Chen, L. Yan, Y. Han, Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci. China Inf. Sci. 64, 160404 (2021).

    [7] R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18, e2202590 (2022).

    [8] L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast. Nat. Neurosci. 3(Suppl), 1178–1183 (2000).

    [9] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang et al., Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    [10] K.-N. Kim, M.-J. Sung, H.-L. Park, T.-W. Lee, Organic synaptic transistors for bio-hybrid neuromorphic electronics. Adv. Electron. Mater. 8, 2100935 (2022).

    [11] R. Yu, E. Li, X. Wu, Y. Yan, W. He et al., Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 12, 15446–15455 (2020).

    [12] S.J. Kim, S. Kim, H.W. Jang, Competing memristors for brain-inspired computing. iScience 24, 101889 (2021).

    [13] K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano Micro Lett. 14, 58 (2022).

    [14] H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in In-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano Micro Lett. 16, 121 (2024).

    [15] Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    [16] R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Ann. Rev. Physiol. 64(1), 355–405 (2002).

    [17] T.V.P. Bliss, G.L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    [18] M.-K. Kim, J.-S. Lee, Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12, 1680–1687 (2018).

    [19] D. Kim, J.-S. Lee, Neurotransmitter-induced excitatory and inhibitory functions in artificial synapses. Adv. Funct. Mater. 32, 2200497 (2022).

    [20] Y.-B. Leng, Y.-Q. Zhang, Z. Lv, J. Wang, T. Xie et al., Recent progress in multiterminal memristors for neuromorphic applications. Adv. Electron. Mater. 9, 2300108 (2023).

    [21] H. Cho, D. Lee, K. Ko, D.-Y. Lin, H. Lee et al., Double-floating-gate van der Waals transistor for high-precision synaptic operations. ACS Nano 17, 7384–7393 (2023).

    [22] W. Li, J. Li, Y. Chen, Z. Chen, W. Li et al., Demonstration of nonvolatile storage and synaptic functions in all-two-dimensional floating-gate transistors based on MoS2 channels. ACS Appl. Electron. Mater. 5, 4354–4362 (2023).

    [23] H.-Y. Huang, C. Ge, Q.-H. Zhang, C.-X. Liu, J.-Y. Du et al., Electrolyte-gated synaptic transistor with oxygen ions. Adv. Funct. Mater. 29, 1902702 (2019).

    [24] M.-K. Kim, J.-S. Lee, Ferroelectric analog synaptic transistors. Nano Lett. 19, 2044–2050 (2019).

    [25] E. Li, X. Wu, Q. Chen, S. Wu, L. He et al., Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy 85, 106010 (2021).

    [26] H. Li, X. Jiang, W. Ye, H. Zhang, L. Zhou et al., Fully photon modulated heterostructure for neuromorphic computing. Nano Energy 65, 104000 (2019).

    [27] W.C. Abraham, Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387 (2008).

    [28] K. Lee, J. Lee, R.D. Nikam, S. Heo, H. Hwang, Sodium-based nano-ionic synaptic transistor with improved retention characteristics. Nanotechnology 31, 455204 (2020).

    [29] Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun et al., Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29, 1902538 (2019).

    [30] H.-G. Hwang, Y. Pyo, J.-U. Woo, I.-S. Kim, S.-W. Kim et al., Engineering synaptic plasticity through the control of oxygen vacancy concentration for the improvement of learning accuracy in a Ta2O5 memristor. J. Alloys Compd. 902, 163764 (2022).

    [31] H. Lee, M. Jin, H.-J. Na, C. Im, J.H. Lee et al., Implementation of synaptic device using ultraviolet ozone treated water-in-bisalt/polymer electrolyte-gated transistor. Adv. Funct. Mater. 32, 2110591 (2022).

    [32] S. Oh, S. Jung, M.H. Ali, J.-H. Kim, H. Kim et al., Highly stable artificial synapse consisting of low-surface defect van der Waals and self-assembled materials. ACS Appl. Mater. Interfaces 12, 38299–38305 (2020).

    [33] J. Bak, S. Kim, K. Park, J. Yoon, M. Yang et al., Reinforcing synaptic plasticity of defect-tolerant states in alloyed 2D artificial transistors. ACS Appl. Mater. Interfaces 15(33), 39539–39549 (2023).

    [34] C. Pan, C.-Y. Wang, S.-J. Liang, Y. Wang, T. Cao et al., Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020).

    [35] M. Li, Z. Liu, Y. Sun, Y. Ding, H. Chen et al., Tailoring neuroplasticity in a ferroelectric-gated multi-terminal synaptic transistor by Bi-directional modulation for improved pattern edge recognition. Adv. Funct. Mater. 33, 2307986 (2023).

    [36] Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    [37] X. Huang, Q. Li, W. Shi, K. Liu, Y. Zhang et al., Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small 17, e2102820 (2021).

    [38] Y. Sun, M. Li, Y. Ding, H. Wang, H. Wang et al., Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. InfoMat 4, e12317 (2022).

    [39] Y. Sun, Y. Ding, D. Xie, J. Xu, M. Sun et al., Optogenetics-inspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity. Adv. Opt. Mater. 9, 2002232 (2021).

    [40] Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    [41] Y. Zhu, Y. He, C. Chen, L. Zhu, C. Wan et al., IGZO-based neuromorphic transistors with temperature-dependent synaptic plasticity and spiking logics. Sci. China Inf. Sci. 65, 162401 (2022).

    [42] Y. Choi, S. Oh, C. Qian, J.-H. Park, J.H. Cho, Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11, 4595 (2020).

    [43] T. Mikolajick, M.H. Park, L. Begon-Lours, S. Slesazeck, From ferroelectric material optimization to neuromorphic devices. Adv. Mater. 35, 2206042 (2023).

    [44] M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li et al., Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 30(50), 2003419 (2020).

    [45] Q. Zhang, Z. Zhang, C. Li, R. Xu, D. Yang et al., Van der Waals materials-based floating gate memory for neuromorphic computing. Chip 2, 100059 (2023).

    [46] X. Lin, Y. Li, Y. Lei, Q. Sun, Electric-double-layer-gated 2D transistors for bioinspired sensors and neuromorphic devices. Int. J. Smart Nano Mater. 15, 238–259 (2024).

    [47] M. Song, Y. Sun, Z. Liu, B. Wei, H. Wang et al., Threshold voltage control of carbon nanotube-based synaptic transistors via chemical doping for plasticity modulation and symmetry improvement. Carbon 184, 295–302 (2021).

    [48] N. He, Q. Yuan, Y. Wang, Y. Sun, D. Wen, Inverter and ternary content-addressable memory based on carbon nanotube transistors using chemical doping strategy. Adv. Electron. Mater. 8, 2200424 (2022).

    [49] W. Li, J. Huang, B. Han, C. Xie, X. Huang et al., Molten-salt-assisted chemical vapor deposition process for substitutional doping of monolayer MoS2 and effectively altering the electronic structure and phononic properties. Adv. Sci. 7, 2001080 (2020).

    [50] H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang et al., Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 30, 1907684 (2020).

    [51] Q. Liu, S. Zeiske, X. Jiang, D. Desta, S. Mertens et al., Electron-donating amine-interlayer induced n-type doping of polymer: nonfullerene blends for efficient narrowband near-infrared photo-detection. Nat. Commun. 13, 5194 (2022).

    [52] H. Huang, L. Wang, Y. Lv, X. Liu, X. Zhao et al., High-performance WSe2 n-type field-effect transistors enabled by InOx damage-free doping. IEEE Electron Device Lett. 42, 1081–1084 (2021).

    [53] L. Loh, Z. Zhang, M. Bosman, G. Eda, Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 14, 1668–1681 (2021).

    [54] M. Cargnello, A.C. Johnston-Peck, B.T. Diroll, E. Wong, B. Datta et al., Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).

    [55] J. Suh, T.L. Tan, W. Zhao, J. Park, D.-Y. Lin et al., Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 9, 199 (2018).

    [56] X. Zhang, Z. Shao, X. Zhang, Y. He, J. Jie, Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Adv. Mater. 28, 10409–10442 (2016).

    [57] S. Xiong, Y. Dai, J. Yang, W. Xiao, D. Li et al., Surface charge-transfer doping for highly efficient perovskite solar cells. Nano Energy 79, 105505 (2021).

    [58] Y. Gong, H. Yuan, C.-L. Wu, P. Tang, S.-Z. Yang et al., Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    [59] J. Zhou, Z. Lin, H. Ren, X. Duan, I. Shakir et al., Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

    [60] C. Zhou, Y. Yu, X. Zhang, Y. Cheng, J. Xu et al., Cu intercalation and Br doping to thermoelectric SnSe2 lead to ultrahigh electron mobility and temperature-independent power factor. Adv. Funct. Mater. 30, 1908405 (2020).

    [61] A. Azcatl, X. Qin, A. Prakash, C. Zhang, L. Cheng et al., Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 16, 5437–5443 (2016).

    [62] J. Zou, Z. Cai, Y. Lai, J. Tan, R. Zhang et al., Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15, 7340–7347 (2021).

    [63] Y. Wang, Y. Zheng, C. Han, W. Chen, Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 14, 1682–1697 (2021).

    [64] A. Nipane, D. Karmakar, N. Kaushik, S. Karande, S. Lodha, Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 10, 2128–2137 (2016).

    [65] X. Liu, D. Qu, J. Ryu, F. Ahmed, Z. Yang et al., P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 28, 2345–2351 (2016).

    [66] X. Liu, Y. Yuan, D. Qu, J. Sun, Ambipolar MoS2 field-effect transistor by spatially controlled chemical doping. Phys. Status Solidi RRL 13, 1900208 (2019).

    [67] Y. Li, H. Yan, B. Xu, L. Zhen, C.-Y. Xu, Electrochemical intercalation in atomically thin van der Waals materials for structural phase transition and device applications. Adv. Mater. 33, e2000581 (2021).

    [68] J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu et al., Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, e1800195 (2018).

    [69] Y. Park, M.-K. Kim, J.-S. Lee, Ion-gating synaptic transistors with long-term synaptic weight modulation. J. Mater. Chem. C 9, 5396–5402 (2021).

    [70] J.H. Baek, K.J. Kwak, S.J. Kim, J. Kim, J.Y. Kim et al., Two-terminal lithium-mediated artificial synapses with enhanced weight modulation for feasible hardware neural networks. Nano-Micro Lett. 15, 69 (2023).

    [71] Y. Du, X. Wang, J. Sun, Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 14, 754–761 (2021).

    [72] Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou et al., Engineering crystallinity and oxygen vacancies of co(II) oxide nanosheets for high performance and robust rechargeable Zn–air batteries. Adv. Funct. Mater. 31, 2101239 (2021).

    [73] B. Wang, J. Liu, S. Yao, F. Liu, Y. Li et al., Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. J. Mater. Chem. A 9, 17143–17172 (2021).

    [74] Y. Liu, C. Xiao, Z. Li, Y. Xie, Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 6, 1600436 (2016).

    [75] Z. Wu, Y. Zhao, W. Jin, B. Jia, J. Wang et al., Recent progress of vacancy engineering for electrochemical energy conversion related applications. Adv. Funct. Mater. 31, 2009070 (2021).

    [76] Q. Gao, W. Luo, X. Ma, Z. Ma, S. Li et al., Electronic modulation and vacancy engineering of Ni9S8 to synergistically boost efficient water splitting: active vacancy-metal pairs. Appl. Catal. B-Environ. 310, 121356 (2022).

    [77] Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao et al., Brain-inspired computing with memristors: challenges in devices, circuits, and systems. Appl. Phys. Rev. 7, 011308 (2020).

    [78] G. Di Martino, A. Demetriadou, W. Li, D. Kos, B. Zhu et al., Real-time in situ optical tracking of oxygen vacancy migration in memristors. Nat. Electron. 3, 687–693 (2020).

    [79] H. Tan, S. Majumdar, Q. Qin, J. Lahtinen, S. Dijken, Mimicking neurotransmitter release and long-term plasticity by oxygen vacancy migration in a tunnel junction memristor. Adv. Intelligent Syst. 1, 1900036 (2019).

    [80] Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang et al., Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021).

    [81] V. Humbert, R. El Hage, G. Krieger, G. Sanchez-Santolino, A. Sander et al., An oxygen vacancy memristor ruled by electron correlations. Adv. Sci. 9, e2201753 (2022).

    [82] J. Jiang, T. Xu, J. Lu, L. Sun, Z. Ni, Defect engineering in 2D materials: precise manipulation and improved functionalities. Research 2019, 4641739 (2019).

    [83] F. Bai, L. Xu, X. Zhai, X. Chen, W. Yang, Vacancy in ultrathin 2D nanomaterials toward sustainable energy application. Adv. Energy Mater. 10, 1902107 (2020).

    [84] Z. Qin, K. Xu, H. Yue, H. Wang, J. Zhang et al., Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuat. B Chem. 262, 771–779 (2018).

    [85] J. Kim, C. Im, C. Lee, J. Hwang, H. Jang et al., Solvent-assisted sulfur vacancy engineering method in MoS2 for a neuromorphic synaptic memristor. Nanoscale Horiz. 8, 1417–1427 (2023).

    [86] S.J. Kim, T.H. Lee, J.-M. Yang, J.W. Yang, Y.J. Lee et al., Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022).

    [87] X. Hou, T. Jin, Y. Zheng, W. Chen, Atomic-scale interface engineering for two-dimensional materials based field-effect transistors. SmartMat (2023).

    [88] S. Banerjee, J. Luginsland, P. Zhang, Interface engineering of electrical contacts. Phys. Rev. Applied 15, 064048 (2021).

    [89] Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong et al., Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014).

    [90] B. Zheng, C. Ma, D. Li, J. Lan, Z. Zhang et al., Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 140, 11193–11197 (2018).

    [91] Q. Li, Q. Zhou, L. Shi, Q. Chen, J. Wang, Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J. Mater. Chem. A 7, 4291–4312 (2019).

    [92] A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L’Heureux, N.Y.-W. Tang et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    [93] Q. Zhou, Q. Chen, Y. Tong, J. Wang, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55, 11437–11441 (2016).

    [94] J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu et al., Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016).

    [95] T. Ahmed, M. Tahir, M.X. Low, Y. Ren, S.A. Tawfik et al., Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater. 33, e2004207 (2021).

    [96] S. Seo, S.H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).

    [97] Y. Chen, Y. Wang, Z. Wang, Y. Gu, Y. Ye et al., Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 4, 357–363 (2021).

    [98] Y. Sun, Y. Ding, D. Xie, M. Sun, J. Xu et al., Reconfigurable optical memory based on MoS2/QDs mixed-dimensional van der Waals heterostructure. 2D Mater. 8, 025021 (2021).

    [99] M. Farronato, P. Mannocci, M. Melegari, S. Ricci, C.M. Compagnoni et al., Reservoir computing with charge-trap memory based on a MoS2 channel for neuromorphic engineering. Adv. Mater. 35, e2205381 (2023).

    [100] T. Zhao, C. Zhao, W. Xu, Y. Liu, H. Gao et al., Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx mxenes floating gate. Adv. Funct. Mater. 31(45), 2106000 (2021).

    [101] Y. Cao, A. Rushforth, Y. Sheng, H. Zheng, K. Wang, Tuning a binary ferromagnet into a multistate synapse with spin–orbit-torque-induced plasticity. Adv. Funct. Mater. 29, 1808104 (2019).

    [102] L. Liu, W. Xiong, Y. Liu, K. Chen, Z. Xu et al., Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater. 6, 1901012 (2020).

    [103] I. Kupfermann, Modulatory actions of neurotransmitters. Annu. Rev. Neurosci. 2, 447–465 (1979).

    [104] K.R. Weiss, E. Shapiro, I. Kupfermann, Modulatory synaptic actions of an identified histaminergic neuron on the serotonergic metacerebral cell of Aplysia. J. Neurosci. 6, 2393–2402 (1986).

    [105] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    [106] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    [107] T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    [108] R. Wu, Q. Tao, W. Dang, Y. Liu, B. Li et al., Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019).

    [109] A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013).

    [110] L. Liu, C. Liu, L. Jiang, J. Li, Y. Ding et al., Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16, 874–881 (2021).

    [111] Z. Sheng, J. Dong, W. Hu, Y. Wang, H. Sun et al., Reconfigurable logic-in-memory computing based on a polarity-controllable two-dimensional transistor. Nano Lett. 23, 5242–5249 (2023).

    [112] S.-Y. Min, W.-J. Cho, CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2O5 hybrid electric double layer. Sci. Rep. 10, 15561 (2020).

    [113] Z. Lv, M. Chen, F. Qian, V.A.L. Roy, W. Ye et al., Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 29, 1902374 (2019).

    [114] M. Ba, M. Erouel, S. Mansouri, L. Chouiref, M. Jdir et al., Channel length effect of P3HT: ZnO hybrid blend layer on electrical characteristics of thin-film transistors. Sens. Actuat. A Phys. 359, 114470 (2023).

    [115] F. Zhang, H. Zhang, L. Zhu, L. Qin, Y. Wang et al., Two-dimensional organic–inorganic hybrid perovskite field-effect transistors with polymers as bottom-gate dielectrics. J. Mater. Chem. C 7, 4004–4012 (2019).

    [116] I.Y. Jo, J.-G. Park, J.-H. Moon, J.Y. Jung, D.E. Kim et al., Low-voltage-operating complementary-like circuits using ambipolar organic-inorganic hybrid thin-film transistors with solid-state-electrolyte gate insulator. Org. Electron. 75, 105358 (2019).

    [117] K.S. Jung, K. Heo, M.J. Kim, M. Andreev, S. Seo et al., Double negative differential resistance device based on hafnium disulfide/pentacene hybrid structure. Adv. Sci. 7, 2000991 (2020).

    [118] C. Jiang, J. Liu, L. Yang, J. Gong, H. Wei et al., A flexible artificial sensory nerve enabled by nanoparticle-assembled synaptic devices for neuromorphic tactile recognition. Adv. Sci. 9, e2106124 (2022).

    [119] K.S. Severson, D. Xu, M. Van de Loo, L. Bai, D.D. Ginty et al., Active touch and self-motion encoding by merkel cell-associated afferents. Neuron 94, 666-676.e9 (2017).

    [120] Y.R. Lee, T.Q. Trung, B.U. Hwang, N.E. Lee, A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 11, 2753 (2020).

    [121] L. Mao, Neuromorphic sensing: a new breed of intelligent sensors. ACS Sens. 8, 2896–2897 (2023).

    [122] M. Zeng, Y. He, C. Zhang, Q. Wan, Neuromorphic devices for bionic sensing and perception. Front. Neurosci. 15, 690950 (2021).

    [123] T. Sarkar, K. Lieberth, A. Pavlou, T. Frank, V. Mailaender et al., An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022).

    [124] M. Lee, W. Lee, S. Choi, J.W. Jo, J. Kim et al., Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 29, 1700951 (2017).

    [125] L. Yin, W. Huang, R. Xiao, W. Peng, Y. Zhu et al., Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett. 20, 3378–3387 (2020).

    [126] K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15, e1900010 (2019).

    [127] F. Huang, F. Fang, Y. Zheng, Q. You, H. Li et al., Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res. 16, 1304–1312 (2023).

    [128] C. Han, X. Han, J. Han, M. He, S. Peng et al., Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv. Funct. Mater. 32, 2113053 (2022).

    [129] Y. Ran, W. Lu, X. Wang, Z. Qin, X. Qin et al., High-performance asymmetric electrode structured light-stimulated synaptic transistor for artificial neural networks. Mater. Horiz. 10, 4438–4451 (2023).

    [130] Y. Sun, Y. Ding, D. Xie, Mixed-dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications. Adv. Funct. Mater. 31(47), 2105625 (2021).

    [131] S.W. Cho, C. Jo, Y.-H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14, 203 (2022).

    [132] X. Zhu, W.D. Lu, Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano 12, 1242–1249 (2018).

    [133] H. Fang, W. Hu, Photogating in low dimensional photodetectors. Adv. Sci. 4, 1700323 (2017).

    [134] J. Shin, H. Yoo, Photogating effect-driven photodetectors and their emerging applications. Nanomaterials 13, 882 (2023).

    [135] M. Kumar, R. Singh, H. Kang, S. Kim, H. Seo, An artificial piezotronic synapse for tactile perception. Nano Energy 73, 104756 (2020).

    [136] Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3, 0429 (2018).

    [137] B.C. Tee, A. Chortos, A. Berndt, A.K. Nguyen, A. Tom et al., A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    [138] A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    [139] M.A. McEvoy, N. Correll, Materials science. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    [140] Y. Zang, F. Zhang, C.-A. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2, 140–156 (2015).

    [141] Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu et al., Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and Internet of Things. InfoMat 2, 1131–1162 (2020).

    [142] Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020).

    [143] C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32, 1902434 (2020).

    [144] X. Han, Y. Zhang, Z. Huo, X. Wang, G. Hu et al., A two-terminal optoelectronic synapses array based on the ZnO/Al2O3/CdS heterojunction with strain-modulated synaptic weight. Adv. Electron. Mater. 9, 2201068 (2023).

    [145] Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu et al., Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 29, 1900959 (2019).

    [146] H. Shim, F. Ershad, S. Patel, Y. Zhang, B. Wang et al., An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat. Electron. 5, 660–671 (2022).

    [147] J. Du, H. Yu, B. Liu, M. Hong, Q. Liao et al., Strain engineering in 2D material-based flexible optoelectronics. Small Methods 5, e2000919 (2021).

    [148] T. Monteiro, F.S. Rodrigues, M. Pexirra, B.F. Cruz, A.I. Gonçalves et al., Using temperature to analyze the neural basis of a time-based decision. Nat. Neurosci. 26, 1407–1416 (2023).

    [149] K. Shibasaki, M. Suzuki, A. Mizuno, M. Tominaga, Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J. Neurosci. 27(7), 1566–1575 (2007).

    [150] J.C. Montgomery, J.A. MacDonald, Effects of temperature on nervous system: implications for behavioral performance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259, R191–R196 (1990).

    [151] M.J. Van Hook, Temperature effects on synaptic transmission and neuronal function in the visual thalamus. PLoS ONE 15, e0232451 (2020).

    [152] F.F. Weight, S.D. Erulkar, Synaptic transmission and effects of temperature at the squid giant synapse. Nature 261, 720–722 (1976).

    [153] A. Mahanty, G.K. Purohit, S. Banerjee, D. Karunakaran, S. Mohanty et al., Proteomic changes in the liver of Channa striatus in response to high temperature stress. Electrophoresis 37, 1704–1717 (2016).

    [154] E. Li, W. Lin, Y. Yan, H. Yang, X. Wang et al., Synaptic transistor capable of accelerated learning induced by temperature-facilitated modulation of synaptic plasticity. ACS Appl. Mater. Interfaces 11, 46008–46016 (2019).

    [155] T. Sakanoue, H. Sirringhaus, Band-like temperature dependence of mobility in asolution-processed organic semiconductor. Nat. Mater. 9, 736–740 (2010).

    [156] Y. Sun, D. Xie, X. Zhang, J. Xu, X. Li et al., Temperature-dependent transport and hysteretic behaviors induced by interfacial states in MoS2 field-effect transistors with lead-zirconate-titanate ferroelectric gating. Nanotechnology 28, 045204 (2017).

    [157] Y. Deng, M. Zhao, Y. Ma, S. Liu, M. Liu et al., A flexible and biomimetic olfactory synapse with gasotransmitter-mediated plasticity. Adv. Funct. Mater. 33, 2214139 (2023).

    [158] M. Li, J. Deng, X. Wang, S. Shao, X. Li et al., Flexible printed single-walled carbon nanotubes olfactory synaptic transistors with crosslinked poly(4-vinylphenol) as dielectrics. Flexible Printed Electronics 6, 034001 (2021).

    [159] X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2021).

    [160] M.U.K. Sadaf, N.U. Sakib, A. Pannone, H. Ravichandran, S. Das, A bio-inspired visuotactile neuron for multisensory integration. Nat. Commun. 14, 5729 (2023).

    Yilin Sun, Huaipeng Wang, Dan Xie. Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications[J]. Nano-Micro Letters, 2024, 16(1): 211
    Download Citation