• Chip
  • Vol. 3, Issue 3, 100104 (2024)
Rongxiang Guo1,2,†, Qiyue Lang1,2,†, Zunyue Zhang1,2,†, Haofeng Hu1,2..., Tiegen Liu1,2, Jiaqi Wang3,* and Zhenzhou Cheng1,2,4,5,6,**|Show fewer author(s)
Author Affiliations
  • 1School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-electronic Information Technology, Ministry of Education, Tianjin 300072, China
  • 3College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 4Georgia Tech-Shenzhen Institute, Tianjin University, Shenzhen 518055, China
  • 5Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
  • 6School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
  • show less
    DOI: 10.1016/j.chip.2024.100104 Cite this Article
    Rongxiang Guo, Qiyue Lang, Zunyue Zhang, Haofeng Hu, Tiegen Liu, Jiaqi Wang, Zhenzhou Cheng. Suspended nanomembrane silicon photonic integrated circuits[J]. Chip, 2024, 3(3): 100104 Copy Citation Text show less
    References

    [1] A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien. Silica-on-silicon waveguide quantum circuits. Science, 320 (2008), pp. 646-649.

    [2] C. Koos, et al.. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics., 3 (2009), pp. 216-219.

    [3] D. Wan, et al.. Hyperuniform disordered solids with morphology engineering. Laser Photonics Rev., 17 (2023), p. 2300398.

    [4] W. Bogaerts, et al.. Programmable photonic circuits. Nature, 586 (2020), pp. 207-216.

    [5] T. Bagci, et al.. Optical detection of radio waves through a nanomechanical transducer. Nature, 507 (2014), pp. 81-85.

    [6] L. Tang, et al.. Measurement of non-monotonic Casimir forces between silicon nanostructures. Nat. Photonics, 11 (2017), pp. 97-101.

    [7] A.E. Rugar, et al.. Narrow-linewidth tin-vacancy centers in a diamond waveguide. ACS Photonics, 7 (2020), pp. 2356-2361.

    [8] S.S. Azadeh, et al.. Microcantilever-integrated photonic circuits for broadband laser beam scanning. Nat. Commun., 14 (2023), p. 2641.

    [9] L. Wang, P. Zhang, Z. Liu, Z. Wang, R. Yang. On-chip mechanical computing: status, challenges, and opportunities. Chip, 2 (2023), p. 100038.

    [10] R. Van Laer, B. Kuyken, D. Van Thourhout, R. Baets. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photonics, 9 (2015), pp. 199-203.

    [11] Q. Liu, H. Li, M. Li. Electromechanical Brillouin scattering in integrated optomechanical waveguides. Optica, 6 (2019), pp. 778-785.

    [12] N.T. Otterstrom, R.O. Behunin, E.A. Kittlaus, Z. Wang, P.T. Rakich. A silicon Brillouin laser. Science, 360 (2018), pp. 1113-1116.

    [13] A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, B.J. Eggleton. Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire. Opt. Lett., 40 (2015), pp. 4154-4157.

    [14] Y. Yu, et al.. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry. Laser Photonics Rev., 9 (2015), pp. 241-247.

    [15] Y.-H. Lai, et al.. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics, 14 (2020), pp. 345-349.

    [16] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4 (2010), pp. 495-497.

    [17] S.A. Miller, et al.. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4 (2017), pp. 707-712.

    [18] R. Guo, et al.. Blazed subwavelength grating coupler. Photonics Res., 11 (2023), pp. 189-195.

    [19] J. Chiles, et al.. Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica, 6 (2019), pp. 1246-1254.

    [20] P.T. Lin, V. Singh, Y. Cai, L.C. Kimerling, A. Agarwal. Air-clad silicon pedestal structures for broadband mid-infrared microphotonics. Opt. Lett., 38 (2013), pp. 1031-1033.

    [21] F. Ottonello-Briano, et al.. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide. Opt. Lett., 45 (2020), pp. 109-112.

    [22] W. Liu, et al.. Suspended silicon waveguide platform with subwavelength grating metamaterial cladding for long-wave infrared sensing applications. Nanophotonics, 10 (2021), pp. 1861-1870.

    [23] A. Vasiliev, et al.. On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators. ACS Sens., 1 (2016), pp. 1301-1307.

    [24] T.T.D. Dinh, et al.. Mid-infrared Fourier-transform spectrometer based on metamaterial lateral cladding suspended silicon waveguides. Opt. Lett., 47 (2022), pp. 810-813.

    [25] R. Kou, et al.. Mid-IR broadband supercontinuum generation from a suspended silicon waveguide. Opt. Lett., 43 (2018), pp. 1387-1390.

    [26] M.K. Schmidt, et al.. Suspended mid-infrared waveguides for stimulated Brillouin scattering. Opt. Express, 27 (2019), pp. 4976-4989.

    [27] P.Y. Yang, et al.. Freestanding waveguides in silicon. Appl. Phys. Lett., 90 (2007), p. 241109.

    [28] P. Sun, R.M. Reano. Low-power optical bistability in a free-standing silicon ring resonator. Opt. Lett., 35 (2010), pp. 1124-1126.

    [29] M. Pi, et al.. Ultra-wideband mid-infrared chalcogenide suspended nanorib waveguide gas sensors with exceptionally high external confinement factor beyond free-space. ACS Nano, 17 (2023), pp. 17761-17770.

    [30] W. Zhou, H.K. Tsang. Dual-wavelength-band subwavelength grating coupler operating in the near infrared and extended shortwave infrared. Opt. Lett., 44 (2019), pp. 3621-3624.

    [31] Z. Cheng, et al.. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Opt. Lett., 37 (2012), pp. 1217-1219.

    [32] R. Guo, H. Gao, T. Liu, Z. Cheng. Ultra-thin mid-infrared silicon grating coupler. Opt. Lett., 47 (2022), pp. 1226-1229.

    [33] Q. Qiao, et al.. MEMS-enabled on-chip computational mid-infrared spectrometer using silicon photonics. ACS Photonics, 9 (2022), pp. 2367-2377.

    [34] S. Kim, et al.. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun., 9 (2018), p. 2623.

    [35] T. Baba. Slow light in photonic crystals. Nat. Photonics, 2 (2008), pp. 465-473.

    [36] Y. Xia, et al.. Suspended Si ring resonator for mid-IR application. Opt. Lett., 38 (2013), pp. 1122-1124.

    [37] Z. Cheng, H.K. Tsang. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt. Lett., 39 (2014), pp. 2206-2209.

    [38] T.-H. Xiao, et al.. Mid-infrared high-Q germanium microring resonator. Opt. Lett., 43 (2018), pp. 2885-2888.

    [39] D. Ren, C. Dong, S.J. Addamane, D. Burghoff. High-quality microresonators in the longwave infrared based on native germanium. Nat. Commun., 13 (2022), p. 5727.

    [40] Q. Cao, et al.. Surface-enhanced Raman scattering using nanoporous gold on suspended silicon nitride waveguides. Opt. Express, 26 (2018), pp. 24614-24620.

    [41] M. Barrow, J. Phillips. Mid-wave infrared transmittance filters in suspended GaAs subwavelength gratings. Appl. Phys. Lett., 119 (2021), Article 031103.

    [42] K.M. Yoo, et al.. InGaAs membrane waveguide: a promising platform for monolithic integrated mid-infrared optical gas sensor. ACS Sens., 5 (2020), pp. 861-869.

    [43] H. Lin, et al.. Chalcogenide glass-on-graphene photonics. Nat. Photonics, 11 (2017), pp. 798-805.

    [44] X. Lin, et al.. Compact mid-infrared chalcogenide glass photonic devices based on robust-inverse design. Laser Photonics Rev., 17 (2023), p. 2200445.

    [45] P. Ma, et al.. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt. Express, 21 (2013), pp. 29927-29937.

    [46] M. Vlk, et al.. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light Sci. Appl., 10 (2021), p. 26.

    [47] P. Rabiei, A. Rao, J. Chiles, J. Ma, S. Fathpour. Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates. Opt. Lett., 39 (2014), pp. 5379-5382.

    [48] Z. Wang, et al.. Metasurface on integrated photonic platform: from mode converters to machine learning. Nanophotonics, 11 (2022), pp. 3531-3546.

    [49] J. Zou, et al.. Novel high-resolution and large-bandwidth micro-spectrometer using multi-input counter-propagating arrayed waveguide grating and dual-wavelength grating coupler on silicon on insulator. Laser Photonics Rev., 17 (2023), p. 2200355.

    [50] D. Benedikovic, et al.. High-efficiency single etch step apodized surface grating coupler using subwavelength structure. Laser Photonics Rev., 8 (2014), pp. L93-L97.

    [51] E. Dulkeith, F. Xia, L. Schares, W.M.J. Green, Y.A. Vlasov. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express, 14 (2006), pp. 3853-3863.

    [52] J. Du, et al.. High speed and small footprint silicon micro-ring modulator assembly for space-division-multiplexed 100-Gbps optical interconnection. Opt. Express, 26 (2018), pp. 13721-13729.

    [53] K. Powell, et al.. High-Q suspended optical resonators in 3C silicon carbide obtained by thermal annealing. Opt. Express, 28 (2020), pp. 4938-4949.

    [54] R. Huang, et al.. High resolution, high channel count silicon arrayed waveguide grating router on-chip. Opt. Express, 31 (2023), pp. 14308-14316.

    [55] H. Sun, Q. Qiao, J. Xia, C. Lee, G. Zhou. Mid-infrared silicon photonic phase shifter based on microelectromechanical system. Opt. Lett., 47 (2022), pp. 5801-5803.

    [56] T. Xu, et al.. Giant optical absorption of a PtSe2-on-silicon waveguide in mid-infrared wavelengths. Nanoscale, 16 (2024), pp. 3448-3453.

    Rongxiang Guo, Qiyue Lang, Zunyue Zhang, Haofeng Hu, Tiegen Liu, Jiaqi Wang, Zhenzhou Cheng. Suspended nanomembrane silicon photonic integrated circuits[J]. Chip, 2024, 3(3): 100104
    Download Citation