[7] Zhao D, Tan G. A review of thermoelectric cooling: materials, modeling and applications[J]. Appl. Thermal Engineering, 2014, 66(1/2): 15-24.
[8] Qian B, Ren F, Zhao Y, et al. Enhanced thermoelectric cooling through introduction of material anisotropy in transverse thermoelectric composites[J]. Materials, 2019, 12(13): 2049.
[9] Wang L, Li J, Zhang C, et al. Discovery of low-temperature GeTe-based thermoelectric alloys with high performance competing with Bi2Te3[J]. J. of Materials Chemistry A, 2020, 8(4): 1660-1667.
[10] Soleimani Z, Zoras S, Ceranic B, et al. A review on recent developments of thermoelectric materials for room-temperature applications[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100604.
[11] Chen Z, Han G, Yang L, et al. Nanostructured thermoelectric materials: Current research and future challenge[J]. Progress in Natural Science: Materials International, 2012, 22(6): 535-549.
[13] Li J, Yu P, Wu C, et al. Processing of advanced thermoelectric materials[J]. Science China(Technological Sciences), 2017, 60(9): 1347-1364.
[14] Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science, 2015, 348(6230): 109-114.