• Advanced Photonics Nexus
  • Vol. 3, Issue 3, 036011 (2024)
Emanuele Polino1, Beatrice Polacchi1, Davide Poderini1, Iris Agresti1..., Gonzalo Carvacho1, Fabio Sciarrino1,*, Andrea Di Biagio1,2, Carlo Rovelli3,4,5,* and Marios Christodoulou2,6,*|Show fewer author(s)
Author Affiliations
  • 1Sapienza Università di Roma, Dipartimento di Fisica, Roma, Italy
  • 2Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information Vienna, Vienna, Austria
  • 3Aix-Marseille University, Université de Toulon, CPT-CNRS, Marseille, France
  • 4Western University, Department of Philosophy and the Rotman Institute of Philosophy, London, Ontario, Canada
  • 5Perimeter Institute, Waterloo, Ontario, Canada
  • 6University of Vienna, Vienna Center for Quantum Science and Technology, Faculty of Physics, Vienna, Austria
  • show less
    DOI: 10.1117/1.APN.3.3.036011 Cite this Article Set citation alerts
    Emanuele Polino, Beatrice Polacchi, Davide Poderini, Iris Agresti, Gonzalo Carvacho, Fabio Sciarrino, Andrea Di Biagio, Carlo Rovelli, Marios Christodoulou, "Photonic implementation of quantum gravity simulator," Adv. Photon. Nexus 3, 036011 (2024) Copy Citation Text show less
    References

    [1] C. DeWitt-Morette, D. Rickles. The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference(2011).

    [2] C. Marletto, V. Vedral. Gravitationally-induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett., 119, 240402(2017).

    [3] S. Bose et al. A spin entanglement witness for quantum gravity. Phys. Rev. Lett., 119, 240401(2017).

    [4] T. Krisnanda et al. Observable quantum entanglement due to gravity. NPJ Quantum Inf., 6, 12(2020).

    [5] C. Marletto, V. Vedral. When can gravity path-entangle two spatially superposed masses?. Phys. Rev. D, 98, 046001(2018).

    [6] D. Carney, P. C. E. Stamp, J. M. Taylor. Tabletop experiments for quantum gravity: a user’s manual. Classical Quantum Gravity, 36, 034001(2019).

    [7] D. L. Danielson, G. Satishchandran, R. M. Wald. Gravitationally mediated entanglement: Newtonian field versus gravitons. Phys. Rev. D, 105, 086001(2022).

    [8] R. Howl, R. Penrose, I. Fuentes. Exploring the unification of quantum theory and general relativity with a Bose–Einstein condensate. New J. Phys., 21, 043047(2019).

    [9] R. Howl et al. Non-gaussianity as a signature of a quantum theory of gravity. PRX Quantum, 2, 010325(2021).

    [10] R. J. Marshman, A. Mazumdar, S. Bose. Locality and entanglement in table-top testing of the quantum nature of linearized gravity. Phys. Rev. A, 101, 052110(2020).

    [11] D. Carney, H. Müller, J. M. Taylor. Using an atom interferometer to infer gravitational entanglement generation. PRX Quantum, 2, 030330(2021).

    [12] A. Kent, D. Pitalúa-Garca. Testing the nonclassicality of spacetime: what can we learn from Bell–Bose et al.-Marletto-Vedral experiments?. Phys. Rev. D, 104, 126030(2021).

    [13] H. Chevalier, A. J. Paige, M. S. Kim. Witnessing the non-classical nature of gravity in the presence of unknown interactions. Phys. Rev. A, 102, 022428(2020).

    [14] S. Rijavec et al. Decoherence effects in non-classicality tests of gravity. New J. Phys., 23, 043040(2021).

    [15] M. Carlesso et al. Testing the gravitational field generated by a quantum superposition. New J. Phys., 21, 093052(2019).

    [16] A. Belenchia et al. Information content of the gravitational field of a quantum superposition. Int. J. Mod. Phys. D, 28, 1943001(2019).

    [17] T. D. Galley, F. Giacomini, J. H. Selby. A no-go theorem on the nature of the gravitational field beyond quantum theory. Quantum, 6, 779(2022).

    [18] D. Carney. Newton, entanglement, and the graviton. Phys. Rev. D, 105, 024029(2022).

    [19] C. Marletto, V. Vedral. Interference in quantum field theory: detecting ghosts with phases(2022).

    [20] S. Pal et al. Experimental localisation of quantum entanglement through monitored classical mediator. Quantum, 5, 478(2021).

    [21] S. Aimet, H. Chevalier, M. S. Kim. Gravity mediated entanglement between light beams as a table-top test of quantum gravity(2022).

    [22] B. Yi et al. Spatial qubit entanglement witness for quantum natured gravity(2022).

    [23] C. H. Bennett et al. Concentrating partial entanglement by local operations. Phys. Rev. A, 53, 2046-2052(1996).

    [24] C. H. Bennett et al. Mixed state entanglement and quantum error correction. Phys. Rev. A, 54, 3824-3851(1996).

    [25] S. Popescu, D. Rohrlich. Thermodynamics and the measure of entanglement. Phys. Rev. A, 56, R3319-R3321(1997).

    [26] M. Christodoulou, C. Rovelli. On the possibility of laboratory evidence for quantum superposition of geometries. Phys. Lett. B, 792, 64-68(2019).

    [27] U. Delić et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).

    [28] L. Magrini et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature, 595, 373-377(2021).

    [29] F. Tebbenjohanns et al. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature, 595, 378-382(2021).

    [30] Y. Margalit et al. Realization of a complete Stern-Gerlach interferometer: towards a test of quantum gravity. Sci. Adv., 7, eabg2879(2021).

    [31] T. Westphal et al. Measurement of gravitational coupling between millimeter-sized masses. Nature, 591, 225-228(2021).

    [32] S. Barzanjeh et al. Optomechanics for quantum technologies. Nat. Phys., 18, 15-24(2022).

    [33] J. Oppenheim. A postquantum theory of classical gravity?. Phys. Rev. X, 13, 041040(2023).

    [34] P. Pearle. Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A, 39, 2277-2289(1989).

    [35] I. C. Percival. Quantum space-time fluctuations and primary state diffusion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 451, 503-513(1995).

    [36] R. Penrose. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit., 28, 581-600(1996).

    [37] L. Diósi. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A, 120, 377-381(1987).

    [38] A. Bassi et al. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys., 85, 471-527(2013).

    [39] V. Fragkos, M. Kopp, I. Pikovski. On inference of quantization from gravitationally induced entanglement. AVS Quantum Sci., 4, 045601(2022).

    [40] N. Huggett, N. Linnemann, M. Schneider. Quantum gravity in a laboratory?(2022).

    [41] M. Christodoulou et al. Locally mediated entanglement in linearized quantum gravity. Phys. Rev. Lett., 130, 100202(2023).

    [42] G. Bhole et al. Witnesses of non-classicality for simulated hybrid quantum systems. J. Phys. Commun., 4, 025013(2020).

    [43] J. L. O’Brien et al. Demonstration of an all-optical quantum controlled-NOT gate. Nature, 426, 264-267(2003).

    [44] D. F. V. James et al. On the measurement of qubits. Phys. Rev. A, 64, 052312(2001).

    [45] R. Horodecki et al. Quantum entanglement. Rev. Mod. Phys., 81, 865-942(2009).

    [46] N. Friis et al. Entanglement certification: from theory to experiment. Nat. Rev. Phys., 1, 72-87(2019).

    [47] J. F. Clauser et al. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23, 880-884(1969).

    [48] J. S. Bell. On the Einstein Podolsky Rosen paradox. Phys. Physique Fizika, 1, 195-200(1964).

    [49] N. Brunner et al. Bell nonlocality. Rev. Mod. Phys., 86, 419-478(2014).

    [50] C. Marletto, V. Vedral. Witnessing non-classicality beyond quantum theory. Phys. Rev. D, 102, 086012(2020).

    [51] C. Anastopoulos, B.-L. Hu. Comment on ‘A spin entanglement witness for quantum gravity” and on “gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity,’(2018).

    [52] C. Anastopoulos, M. Lagouvardos, K. Savvidou. Gravitational effects in macroscopic quantum systems: a first-principles analysis. Classical Quantum Gravity, 38, 155012(2021).

    [53] S. Bose et al. Mechanism for the quantum natured gravitons to entangle masses. Phys. Rev. D, 105, 106028(2022).

    [54] D. Poderini et al. Ab initio experimental violation of Bell inequalities. Phys. Rev. Res., 4, 013159(2022).

    [55] B. Dakic, H. Halvoroson, Č. Brukner. Quantum theory and beyond: is entanglement special?. Deep Beauty: Understanding the Quantum World through Mathematical Innovation, 365-392(2009).

    [56] M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information(2010).

    [57] L. Cohen et al. Efficient simulation of loop quantum gravity: a scalable linear-optical approach. Phys. Rev. Lett., 126, 020501(2021).

    [58] R. van der Meer et al. Experimental simulation of loop quantum gravity on a photonic chip. NPJ Quantum Inf., 9, 32(2023).

    [59] E. Martín-Martínez, T. R. Perche. What gravity mediated entanglement can really tell us about quantum gravity. Phys. Rev. D, 108, L101702(2023).

    Emanuele Polino, Beatrice Polacchi, Davide Poderini, Iris Agresti, Gonzalo Carvacho, Fabio Sciarrino, Andrea Di Biagio, Carlo Rovelli, Marios Christodoulou, "Photonic implementation of quantum gravity simulator," Adv. Photon. Nexus 3, 036011 (2024)
    Download Citation