[1] C. DeWitt-Morette, D. Rickles. The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference(2011).
[2] C. Marletto, V. Vedral. Gravitationally-induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett., 119, 240402(2017).
[3] S. Bose et al. A spin entanglement witness for quantum gravity. Phys. Rev. Lett., 119, 240401(2017).
[4] T. Krisnanda et al. Observable quantum entanglement due to gravity. NPJ Quantum Inf., 6, 12(2020).
[5] C. Marletto, V. Vedral. When can gravity path-entangle two spatially superposed masses?. Phys. Rev. D, 98, 046001(2018).
[6] D. Carney, P. C. E. Stamp, J. M. Taylor. Tabletop experiments for quantum gravity: a user’s manual. Classical Quantum Gravity, 36, 034001(2019).
[7] D. L. Danielson, G. Satishchandran, R. M. Wald. Gravitationally mediated entanglement: Newtonian field versus gravitons. Phys. Rev. D, 105, 086001(2022).
[8] R. Howl, R. Penrose, I. Fuentes. Exploring the unification of quantum theory and general relativity with a Bose–Einstein condensate. New J. Phys., 21, 043047(2019).
[9] R. Howl et al. Non-gaussianity as a signature of a quantum theory of gravity. PRX Quantum, 2, 010325(2021).
[10] R. J. Marshman, A. Mazumdar, S. Bose. Locality and entanglement in table-top testing of the quantum nature of linearized gravity. Phys. Rev. A, 101, 052110(2020).
[11] D. Carney, H. Müller, J. M. Taylor. Using an atom interferometer to infer gravitational entanglement generation. PRX Quantum, 2, 030330(2021).
[12] A. Kent, D. Pitalúa-Garca. Testing the nonclassicality of spacetime: what can we learn from Bell–Bose et al.-Marletto-Vedral experiments?. Phys. Rev. D, 104, 126030(2021).
[13] H. Chevalier, A. J. Paige, M. S. Kim. Witnessing the non-classical nature of gravity in the presence of unknown interactions. Phys. Rev. A, 102, 022428(2020).
[14] S. Rijavec et al. Decoherence effects in non-classicality tests of gravity. New J. Phys., 23, 043040(2021).
[15] M. Carlesso et al. Testing the gravitational field generated by a quantum superposition. New J. Phys., 21, 093052(2019).
[16] A. Belenchia et al. Information content of the gravitational field of a quantum superposition. Int. J. Mod. Phys. D, 28, 1943001(2019).
[17] T. D. Galley, F. Giacomini, J. H. Selby. A no-go theorem on the nature of the gravitational field beyond quantum theory. Quantum, 6, 779(2022).
[18] D. Carney. Newton, entanglement, and the graviton. Phys. Rev. D, 105, 024029(2022).
[19] C. Marletto, V. Vedral. Interference in quantum field theory: detecting ghosts with phases(2022).
[20] S. Pal et al. Experimental localisation of quantum entanglement through monitored classical mediator. Quantum, 5, 478(2021).
[21] S. Aimet, H. Chevalier, M. S. Kim. Gravity mediated entanglement between light beams as a table-top test of quantum gravity(2022).
[22] B. Yi et al. Spatial qubit entanglement witness for quantum natured gravity(2022).
[23] C. H. Bennett et al. Concentrating partial entanglement by local operations. Phys. Rev. A, 53, 2046-2052(1996).
[24] C. H. Bennett et al. Mixed state entanglement and quantum error correction. Phys. Rev. A, 54, 3824-3851(1996).
[25] S. Popescu, D. Rohrlich. Thermodynamics and the measure of entanglement. Phys. Rev. A, 56, R3319-R3321(1997).
[26] M. Christodoulou, C. Rovelli. On the possibility of laboratory evidence for quantum superposition of geometries. Phys. Lett. B, 792, 64-68(2019).
[27] U. Delić et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).
[28] L. Magrini et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature, 595, 373-377(2021).
[29] F. Tebbenjohanns et al. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature, 595, 378-382(2021).
[30] Y. Margalit et al. Realization of a complete Stern-Gerlach interferometer: towards a test of quantum gravity. Sci. Adv., 7, eabg2879(2021).
[31] T. Westphal et al. Measurement of gravitational coupling between millimeter-sized masses. Nature, 591, 225-228(2021).
[32] S. Barzanjeh et al. Optomechanics for quantum technologies. Nat. Phys., 18, 15-24(2022).
[33] J. Oppenheim. A postquantum theory of classical gravity?. Phys. Rev. X, 13, 041040(2023).
[34] P. Pearle. Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A, 39, 2277-2289(1989).
[35] I. C. Percival. Quantum space-time fluctuations and primary state diffusion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 451, 503-513(1995).
[36] R. Penrose. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit., 28, 581-600(1996).
[37] L. Diósi. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A, 120, 377-381(1987).
[38] A. Bassi et al. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys., 85, 471-527(2013).
[39] V. Fragkos, M. Kopp, I. Pikovski. On inference of quantization from gravitationally induced entanglement. AVS Quantum Sci., 4, 045601(2022).
[40] N. Huggett, N. Linnemann, M. Schneider. Quantum gravity in a laboratory?(2022).
[41] M. Christodoulou et al. Locally mediated entanglement in linearized quantum gravity. Phys. Rev. Lett., 130, 100202(2023).
[42] G. Bhole et al. Witnesses of non-classicality for simulated hybrid quantum systems. J. Phys. Commun., 4, 025013(2020).
[43] J. L. O’Brien et al. Demonstration of an all-optical quantum controlled-NOT gate. Nature, 426, 264-267(2003).
[44] D. F. V. James et al. On the measurement of qubits. Phys. Rev. A, 64, 052312(2001).
[45] R. Horodecki et al. Quantum entanglement. Rev. Mod. Phys., 81, 865-942(2009).
[46] N. Friis et al. Entanglement certification: from theory to experiment. Nat. Rev. Phys., 1, 72-87(2019).
[47] J. F. Clauser et al. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23, 880-884(1969).
[48] J. S. Bell. On the Einstein Podolsky Rosen paradox. Phys. Physique Fizika, 1, 195-200(1964).
[49] N. Brunner et al. Bell nonlocality. Rev. Mod. Phys., 86, 419-478(2014).
[50] C. Marletto, V. Vedral. Witnessing non-classicality beyond quantum theory. Phys. Rev. D, 102, 086012(2020).
[51] C. Anastopoulos, B.-L. Hu. Comment on ‘A spin entanglement witness for quantum gravity” and on “gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity,’(2018).
[52] C. Anastopoulos, M. Lagouvardos, K. Savvidou. Gravitational effects in macroscopic quantum systems: a first-principles analysis. Classical Quantum Gravity, 38, 155012(2021).
[53] S. Bose et al. Mechanism for the quantum natured gravitons to entangle masses. Phys. Rev. D, 105, 106028(2022).
[54] D. Poderini et al. Ab initio experimental violation of Bell inequalities. Phys. Rev. Res., 4, 013159(2022).
[55] B. Dakic, H. Halvoroson, Č. Brukner. Quantum theory and beyond: is entanglement special?. Deep Beauty: Understanding the Quantum World through Mathematical Innovation, 365-392(2009).
[56] M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information(2010).
[57] L. Cohen et al. Efficient simulation of loop quantum gravity: a scalable linear-optical approach. Phys. Rev. Lett., 126, 020501(2021).
[58] R. van der Meer et al. Experimental simulation of loop quantum gravity on a photonic chip. NPJ Quantum Inf., 9, 32(2023).
[59] E. Martín-Martínez, T. R. Perche. What gravity mediated entanglement can really tell us about quantum gravity. Phys. Rev. D, 108, L101702(2023).