[1] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]. NM, 124-134(1994).
[2] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 79, 325-328(1997).
[3] Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations[J]. Physical Review Letters, 103, 150502(2009).
[4] Lambert N, Chen Y N, Cheng Y C et al. Quantum biology[J]. Nature Physics, 9, 10-18(2013).
[5] Nielsen M A, Chuang I L[M]. Quantum Computation and Quantum Information(2010).
[6] Biamonte J, Wittek P, Pancotti N et al. Quantum machine learning[J]. Nature, 549, 195-202(2017).
[7] Preskill J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2, 79(2018).
[8] Daley A J, Bloch I, Kokail C et al. Practical quantum advantage in quantum simulation[J]. Nature, 607, 667-676(2022).
[9] Babbush R, Huggins W J, Berry D W et al. Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods[J]. Nature Communications, 14, 4058(2023).
[10] Herman D, Googin C, Liu X Y et al. Quantum computing for finance[J]. Nature Reviews Physics, 5, 450-465(2023).
[11] Kivlichan I D, Gidney C, Berry D W et al. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization[J]. Quantum, 4, 296(2020).
[13] Lee J, Berry D W, Gidney C et al. Even more efficient quantum computations of chemistry through tensor hypercontraction[J]. PRX Quantum, 2, 030305(2021).
[14] Gidney C, Ekerå M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits[J]. Quantum, 5, 433(2021).
[15] Ivanov A V, Sünderhauf C, Holzmann N et al. Quantum computation for periodic solids in second quantization[J]. Physical Review Research, 5, 013200(2023).
[16] Bruzewicz C D, Chiaverini J, McConnell R et al. Trapped-ion quantum computing: Progress and challenges[J]. Applied Physics Reviews, 6, 021314(2019).
[17] Wang P F, Luan C Y, Qiao M et al. Single ion qubit with estimated coherence time exceeding one hour[J]. Nature Communications, 12, 233(2021).
[18] Pelofske E, Bärtschi A, Eidenbenz S. Quantum volume in practice: What users can expect from NISQ devices[J]. IEEE Transactions on Quantum Engineering, 3, 1-19(2022).
[19] Arute F, Arya K, Babbush R et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 574, 505-510(2019).
[20] Huang H L, Wu D C, Fan D J et al. Superconducting quantum computing: A review[J]. Science China Information Sciences, 63, 180501(2020).
[21] Zhong H S, Wang H, Deng Y H et al. Quantum computational advantage using photons[J]. Science, 370, 1460-1463(2020).
[22] Zhang X, Li H O, Cao G et al. Semiconductor quantum computation[J]. National Science Review, 6, 32-54(2019).
[23] Philips S G J, Mądzik M T, Amitonov S V et al. Universal control of a six-qubit quantum processor in silicon[J]. Nature, 609, 919-924(2022).
[24] Wu Y, Liu W Q, Geng J P et al. Observation of parity-time symmetry breaking in a single-spin system[J]. Science, 364, 878-880(2019).
[25] Kaufman A M, Ni K K. Quantum science with optical tweezer arrays of ultracold atoms and molecules[J]. Nature Physics, 17, 1324-1333(2021).
[26] Li J, Luo Z H, Xin T et al. Experimental implementation of efficient quantum pseudorandomness on a 12-spin system[J]. Physical Review Letters, 123, 030502(2019).
[28] Li X W, Fu X, Yan F et al. Current status and future development of quantum computation[J]. Strategic Study of CAE, 24, 133-144(2022).
[29] Ballance C J, Harty T P, Linke N M et al. High-fidelity quantum logic gates using trapped-ion hyperfine qubits[J]. Physical Review Letters, 117, 060504(2016).
[30] Egan L, Debroy D M, Noel C et al. Fault-tolerant control of an error-corrected qubit[J]. Nature, 598, 281-286(2021).
[31] Barends R, Kelly J, Megrant A et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J]. Nature, 508, 500-503(2014).
[32] Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit[J]. Nature, 614, 676-681(2023).
[39] Yepez J. Type-II quantum computers[J]. International Journal of Modern Physics C, 12, 1273-1284(2001).
[41] de Leon N P, Itoh K M, Kim D et al. Materials challenges and opportunities for quantum computing hardware[J]. Science, 372, eabb2823(2021).
[42] Gill S S, Kumar A, Singh H et al. Quantum computing: A taxonomy, systematic review and future directions[J]. Software: Practice and Experience, 52, 66-114(2022).
[43] Awan U, Hannola L, Tandon A et al. Quantum computing challenges in the software industry. A fuzzy AHP-based approach[J]. Information and Software Technology, 147, 106896(2022).
[44] Kimble H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).
[45] Wehner S, Elkouss D, Hanson R. Quantum internet: A vision for the road ahead[J]. Science, 362, eaam9288(2018).
[46] Cacciapuoti A S, Caleffi M, Tafuri F et al. Quantum Internet: Networking challenges in distributed quantum computing[J]. IEEE Network, 34, 137-143(2019).
[47] Van Meter R, Satoh R, Benchasattabuse N et al. A Quantum Internet architecture[C]. CO, 341-352(2022).
[48] Avis G, Rozpędek F, Wehner S. Analysis of multipartite entanglement distribution using a central quantum-network node[J]. Physical Review A, 107, 012609(2023).
[49] Cleve R, Buhrman H. Substituting quantum entanglement for communication[J]. Physical Review A, 56, 1201-1204(1997).
[50] Cuomo D, Caleffi M, Cacciapuoti A S. Towards a distributed quantum computing ecosystem[J]. IET Quantum Communication, 1, 3-8(2020).
[51] Van Meter R, Ladd T D, Fowler A G et al. Distributed quantum computation architecture using semiconductor nanophotonics[J]. International Journal of Quantum Information, 8, 295-323(2010).
[54] Bravyi S, Smith G, Smolin J A. Trading classical and quantum computational resources[J]. Physical Review X, 6, 021043(2016).
[55] Li K, Qiu D W, Li L Z et al. Application of distributed semi-quantum computing model in phase estimation[J]. Information Processing Letters, 120, 23-29(2017).
[56] Fujii K, Mizuta K, Ueda H et al. Deep variational quantum eigensolver: A divide-and-conquer method for solving a larger problem with smaller size quantum computers[J]. PRX Quantum, 3, 010346(2022).
[57] Dunjko V, Ge Y M, Cirac J I. Computational speedups using small quantum devices[J]. Physical Review Letters, 121, 250501(2018).
[58] Ge Y M, Dunjko V. A hybrid algorithm framework for small quantum computers with application to finding Hamiltonian cycles[J]. Journal of Mathematical Physics, 61, 012201(2020).
[59] Li J D, Alam M, Ghosh S. Large-scale quantum approximate optimization via divide-and-conquer[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42, 1852-1860(2022).
[61] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 70, 1895-1899(1993).
[62] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical Review, 47, 777-780(1935).
[63] Wootters W K, Zurek W H. A single quantum cannot be cloned[J]. Nature, 299, 802-803(1982).
[64] Gottesman D, Chuang I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations[J]. Nature, 402, 390-393(1999).
[65] Jiang L, Taylor J M, Sørensen A S et al. Distributed quantum computation based on small quantum registers[J]. Physical Review A, 76, 062323(2007).
[66] Żukowski M, Zeilinger A, Horne M A et al. Event-ready-detectors" Bell experiment via entanglement swapping[J]. Physical Review Letters, 71, 4287-4290(1993).
[67] Cuomo D, Caleffi M, Krsulich K et al. Optimized compiler for distributed quantum computing[J]. ACM Transactions on Quantum Computing, 4, 1-29(2023).
[68] Zhou X L, Leung D W, Chuang I L. Methodology for quantum logic gate construction[J]. Physical Review A, 62, 052316(2000).
[69] Eisert J, Jacobs K, Papadopoulos P et al. Optimal local implementation of nonlocal quantum gates[J]. Physical Review A, 62, 052317(2000).
[71] Yimsiriwattana A, Lomonaco Jr S J. Distributed quantum computing: A distributed Shor algorithm[C], 5436, 360-372(2004).
[73] Boschi D, Branca S, De Martini F et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 80, 1121-1125(1998).
[75] Bouwmeester D, Pan J W, Mattle K et al. Experimental quantum teleportation[J]. Nature, 390, 575-579(1997).
[76] Nielsen M A, Knill E, Laflamme R. Complete quantum teleportation using nuclear magnetic resonance[J]. Nature, 396, 52-55(1998).
[77] Duan L M, Lukin M D, Cirac J I et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 414, 413-418(2001).
[78] Riebe M, Häffner H, Roos C F et al. Deterministic quantum teleportation with atoms[J]. Nature, 429, 734-737(2004).
[79] Barrett M D, Chiaverini J, Schaetz T et al. Deterministic quantum teleportation of atomic qubits[J]. Nature, 429, 737-739(2004).
[80] Takeda S, Mizuta T, Fuwa M et al. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique[J]. Nature, 500, 315-318(2013).
[81] Braunstein S L, Kimble H J. Teleportation of continuous quantum variables[J]. Physical Review Letters, 80, 869-872(1998).
[82] Kurpiers P, Magnard P, Walter T et al. Deterministic quantum state transfer and remote entanglement using microwave photons[J]. Nature, 558, 264-267(2018).
[83] Llewellyn D, Ding Y H, Faruque I I et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon[J]. Nature Physics, 16, 148-153(2020).
[84] Yin J, Cao Y, Li Y H et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 356, 1140-1144(2017).
[85] Li B, Cao Y, Li Y H et al. Quantum state transfer over 1200 km assisted by prior distributed entanglement[J]. Physical Review Letters, 128, 170501(2022).
[86] Huang Y F, Ren X F, Zhang Y S et al. Experimental teleportation of a quantum controlled-NOT gate[J]. Physical Review Letters, 93, 240501(2004).
[87] Duan L M, Madsen M J, Moehring D L et al. Probabilistic quantum gates between remote atoms through interference of optical frequency qubits[J]. Physical Review A, 73, 062324(2006).
[88] Gao W B, Goebel A M, Lu C Y et al. Teleportation-based realization of an optical quantum two-qubit entangling gate[J]. Proceedings of the National Academy of Sciences, 107, 20869-20874(2010).
[89] Chou K S, Blumoff J Z, Wang C S et al. Deterministic teleportation of a quantum gate between two logical qubits[J]. Nature, 561, 368-373(2018).
[90] Wan Y, Kienzler D, Erickson S D et al. Quantum gate teleportation between separated qubits in a trapped-ion processor[J]. Science, 364, 875-878(2019).
[95] HQAN. Propelling quantum information into a new era[OL]. https://hqan.illinois.edu
[99] Stobińska M, Alber G, Leuchs G. Perfect excitation of a matter qubit by a single photon in free space[J]. Europhysics Letters, 86, 14007(2009).
[100] Wang Y M, Minář J, Sheridan L et al. Efficient excitation of a two-level atom by a single photon in a propagating mode[J]. Physical Review A, 83, 063842(2011).
[101] Hucul D, Inlek I V, Vittorini G et al. Modular entanglement of atomic qubits using photons and phonons[J]. Nature Physics, 11, 37-42(2015).
[102] Luo Y H, Zhong H S, Erhard M et al. Quantum teleportation in high dimensions[J]. Physical Review Letters, 123, 070505(2019).
[103] Zhong Y P, Chang H S, Bienfait A et al. Deterministic multi-qubit entanglement in a quantum network[J]. Nature, 590, 571-575(2021).
[104] Zhao H, Feng J X, Sun J K et al. Real time deterministic quantum teleportation over 10 km of single optical fiber channel[J]. Optics Express, 30, 3770-3782(2022).
[105] Daiss S, Langenfeld S, Welte S et al. A quantum-logic gate between distant quantum-network modules[J]. Science, 371, 614-617(2021).
[106] Krutyanskiy V, Galli M, Krcmarsky V et al. Entanglement of trapped-ion qubits separated by 230 meters[J]. Physical Review Letters, 130, 050803(2023).
[107] Sahu R, Qiu L, Hease W et al. Entangling microwaves with light[J]. Science, 380, 718-721(2023).
[108] Hu X M, Guo Y, Liu B H et al. Progress in quantum teleportation[J]. Nature Reviews Physics, 5, 339-353(2023).
[109] Luo W, Cao L, Shi Y Z et al. Recent progress in quantum photonic chips for quantum communication and internet[J]. Light: Science & Applications, 12, 175(2023).
[110] Zhao J, Jeng H, Conlon L O et al. Enhancing quantum teleportation efficacy with noiseless linear amplification[J]. Nature Communications, 14, 4745(2023).
[111] Gyongyosi L, Imre S. Scalable distributed gate-model quantum computers[J]. Scientific Reports, 11, 5172(2021).
[112] Häner T, Steiger D S, Hoefler T et al. Distributed quantum computing with QMPI[C], 1-13(2021).
[113] Davarzani Z, Zomorodi M, Houshmand M. A hierarchical approach for building distributed quantum systems[J]. Scientific Reports, 12, 15421(2022).
[114] Grover L K. Quantum telecomputation[OL](1997). https://arxiv.org/abs/quant-ph/9704012
[115] Buhrman H, Cleve R, Wigderson A. Quantum vs. classical communication and computation[C], 63-68(1998).
[116] Deutsch D, Jozsa R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 439, 553-558(1992).
[118] Van Meter R, Nemoto K, Munro W J et al. Distributed arithmetic on a quantum multicomputer[C], 354-365(2006).
[119] Sheng Y B, Zhou L. Distributed secure quantum machine learning[J]. Science Bulletin, 62, 1025-1029(2017).
[120] DiAdamo S, Ghibaudi M, Cruise J. Distributed quantum computing and network control for accelerated VQE[J]. IEEE Transactions on Quantum Engineering, 2, 1-21(2021).
[121] Xiao L G, Qiu D W, Luo L et al. Distributed Shor's algorithm[J]. Quantum Information and Computation, 23, 27-44(2023).
[128] Elkin M, Klauck H, Nanongkai D et al. Can quantum communication speed up distributed computation?[C], 166-175(2014).
[129] Izumi T, Le Gall F. Quantum distributed algorithm for the all-pairs shortest path problem in the CONGEST-CLIQUE model[C], 84-93(2019).
[130] van Apeldoorn J, de Vos T. A framework for distributed quantum queries in the CONGEST model[C], 109-119(2022).
[131] Wu X D, Yao P H. Quantum complexity of weighted diameter and radius in CONGEST networks[C], 120-130(2022).
[132] Zomorodi-Moghadam M, Houshmand M, Houshmand M. Optimizing teleportation cost in distributed quantum circuits[J]. International Journal of Theoretical Physics, 57, 848-861(2018).
[133] Andrés-Martínez P, Heunen C. Automated distribution of quantum circuits via hypergraph partitioning[J]. Physical Review A, 100, 032308(2019).
[134] Dadkhah D, Zomorodi M, Hosseini S E. A new approach for optimization of distributed quantum circuits[J]. International Journal of Theoretical Physics, 60, 3271-3285(2021).
[135] Ferrari D, Cacciapuoti A S, Amoretti M et al. Compiler design for distributed quantum computing[J]. IEEE Transactions on Quantum Engineering, 2, 1-20(2021).
[136] Sundaram R G, Gupta H, Ramakrishnan C R. Efficient distribution of quantum circuits[C](2021).
[137] Dadkhah D, Zomorodi M, Hosseini S E et al. Reordering and partitioning of distributed quantum circuits[J]. IEEE Access, 10, 70329-70341(2022).
[138] Sundaram R G, Gupta H, Ramakrishnan C R. Distribution of quantum circuits over general quantum networks[C]. CO, 415-425(2022).
[140] Peng T Y, Harrow A W, Ozols M et al. Simulating large quantum circuits on a small quantum computer[J]. Physical Review Letters, 125, 150504(2020).
[141] Mitarai K, Fujii K. Constructing a virtual two-qubit gate by sampling single-qubit operations[J]. New Journal of Physics, 23, 023021(2021).
[143] Ayral T, Le Régent F M, Saleem Z et al. Quantum divide and compute: Hardware demonstrations and noisy simulations[C]. Cyprus, 138-140(2020).
[144] Ayral T, Le Régent F M, Saleem Z et al. Quantum divide and compute: Exploring the effect of different noise sources[J]. SN Computer Science, 2, 132(2021).
[145] Eddins A, Motta M, Gujarati T P et al. Doubling the size of quantum simulators by entanglement forging[J]. PRX Quantum, 3, 010309(2022).
[147] Piveteau C, Sutter D. Circuit knitting with classical communication[J]. IEEE Transactions on Information Theory, 99, 1(2023).
[148] Lowe A, Medvidović M, Hayes A et al. Fast quantum circuit cutting with randomized measurements[J]. Quantum, 7, 934(2023).
[149] Van Den Berg E. A simple method for sampling random Clifford operators[C]. CO, 54-59(2021).
[154] Perlin M A, Saleem Z H, Suchara M et al. Quantum circuit cutting with maximum-likelihood tomography[J]. NPJ Quantum Information, 7, 64(2021).
[155] Tang W, Tomesh T, Suchara M et al. CutQC: Using small quantum computers for large quantum circuit evaluations[C], 473-486(2021).
[157] Chen D, Baheri B, Chaudhary V et al. Approximate quantum circuit reconstruction[C]. CO, 509-515(2022).
[158] Kandala A, Mezzacapo A, Temme K et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 549, 242-246(2017).
[159] Ying C, Cheng B, Zhao Y W et al. Experimental simulation of larger quantum circuits with fewer superconducting qubits[J]. Physical Review Letters, 130, 110601(2023).
[160] Guala D, Zhang S M, Cruz E et al. Practical overview of image classification with tensor-network quantum circuits[J]. Scientific Reports, 13, 4427(2023).
[163] Huang H Y, Kueng R, Preskill J. Predicting many properties of a quantum system from very few measurements[J]. Nature Physics, 16, 1050-1057(2020).
[164] Smith K N, Perlin M A, Gokhale P et al. Clifford-based circuit cutting for quantum simulation[C], 1-13(2023).
[165] Chatterjee T, Das A, Mohtashim S I et al. Qurzon: A prototype for a divide and conquer-based quantum compiler for distributed quantum systems[J]. SN Computer Science, 3, 323(2022).
[166] Basu S, Saha A, Chakrabarti A et al. i-QER: An intelligent approach towards quantum error reduction[J]. ACM Transactions on Quantum Computing, 3, 1-18(2022).