[1] Whitesides G M. The origins and the future of microfluidics[J]. Nature, 442, 368-373(2006).
[2] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 442, 381-386(2006).
[3] Craighead H. Future lab-on-a-chip technologies for interrogating individual molecules[J]. Nature, 442, 387-393(2006).
[4] Bellouard Y, Said A, Dugan M et al. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching[J]. Optics Express, 12, 2120-2129(2004).
[5] Liu X Q. Dry etching assisted femtosecond laser fabrication[D](2017).
[6] Tönshoff H K, Momma C, Ostendorf A et al. Microdrilling of metals with ultrashort laser pulses[J]. Journal of Laser Applications, 12, 23-27(2000).
[7] Gamaly E G, Rode A V, Luther-Davies B et al. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics[J]. Physics of Plasmas, 9, 949-957(2002).
[8] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).
[9] Salleo A, Génin F Y, Feit M D et al. Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica[J]. Applied Physics Letters, 78, 2840-2842(2001).
[10] Wu Z X, Jiang H B, Zhang Z H et al. Morphological investigation at the front and rear surfaces of fused silica processed with femtosecond laser pulses in air[J]. Optics Express, 10, 1244-1249(2002).
[11] An R, Li Y, Dou Y P et al. Laser micro-hole drilling of soda-lime glass with femtosecond pulses[J]. Chinese Physics Letters, 21, 2465-2468(2004).
[12] An R, Hoffman M D, Donoghue M A et al. Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices[J]. Optics Express, 16, 15206-15211(2008).
[13] Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 79, 605-612(2004).
[14] Zhu S, Lu Y F, Hong M H et al. Laser ablation of solid substrates in water and ambient air[J]. Journal of Applied Physics, 89, 2400-2403(2001).
[15] Ohl C D, Lindau O, Lauterborn W. Luminescence from spherically and aspherically collapsing laser induced bubbles[J]. Physical Review Letters, 80, 393-396(1998).
[16] Baghdassarian O, Chu H C, Tabbert B et al. Spectrum of luminescence from laser-created bubbles in water[J]. Physical Review Letters, 86, 4934-4937(2001).
[17] Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J]. Journal of Fluid Mechanics, 206, 299-338(1989).
[18] Ren J, Kelly M, Hesselink L. Laser ablation of silicon in water with nanosecond and femtosecond pulses[J]. Optics Letters, 30, 1740-1742(2005).
[19] Li Y, Itoh K, Watanabe W et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 26, 1912-1914(2001).
[20] Li Y, Guo Z, Qu S. Living cell manipulation in a microfluidic device by femtosecond optical tweezers[J]. Optics and Lasers in Engineering, 55, 150-154(2014).
[21] Cao X W, Chen Q D, Fan H et al. Liquid-assisted femtosecond laser precision-machining of silica[J]. Nanomaterials, 8, 287(2018).
[22] Sun X Y, Yu J L, Hu Y W et al. Study on ablation threshold of fused silica by liquid-assisted femtosecond laser processing[J]. Applied Optics, 58, 9027-9032(2019).
[23] Mačernytė L, Skruibis J, Vaičaitis V et al. Femtosecond laser micromachining of soda-lime glass in ambient air and under various aqueous solutions[J]. Micromachines, 10, 354(2019).
[25] Wortmann D, Gottmann J, Brandt N et al. Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching[J]. Optics Express, 16, 1517-1522(2008).
[26] Nakashima S, Sugioka K, Midorikawa K. Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation[J]. Applied Surface Science, 255, 9770-9774(2009).
[27] Kondo Y, Qiu J R, Mitsuyu T et al. Three-dimensional microdrilling of glass by multiphoton process and chemical etching[J]. Japanese Journal of Applied Physics, 38, L1146(1999).
[28] Crespi A, Osellame R, Bragheri F. Femtosecond-laser-written optofluidics in alumino-borosilicate glass[J]. Optical Materials: X, 4, 100042(2019).
[29] Memeo R, Bertaso M, Osellame R et al. Laser-assisted etching of EagleXG glass by irradiation at low pulse-repetition rate[J]. Applied Sciences, 12, 948(2022).
[30] Liu P J, Jiang L, Hu J et al. Etching rate enhancement by shaped femtosecond pulse train electron dynamics control for microchannels fabrication in fused silica glass[J]. Optics Letters, 38, 4613-4616(2013).
[31] Yan X L, Hu J, Li X W et al. Femtosecond laser microchannels fabrication based on electrons dynamics control using temporally or spatially shaped pulses[J]. Proceedings of SPIE, 9266, 92660T(2014).
[32] Du K, Jiang L, Li X W et al. Chemical etching mechanisms and crater morphologies pre-irradiated by temporally decreasing pulse trains of femtosecond laser[J]. Applied Surface Science, 469, 44-49(2019).
[33] Baudach S, Bonse J, Kautek W. Ablation experiments on polyimide with femtosecond laser pulses[J]. Applied Physics A, 69, S395-S398(1999).
[34] Baudach S, Bonse J, Krüger J et al. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate[J]. Applied Surface Science, 154/155, 555-560(2000).
[35] Lee C Y, Chang T C, Wang S C et al. Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip[J]. Biomicrofluidics, 4, 046502(2010).
[36] Suriano R, Kuznetsov A, Eaton S M et al. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels[J]. Applied Surface Science, 257, 6243-6250(2011).
[37] Eaton S M, Zhang H B, Herman P R et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Optics Express, 13, 4708-4716(2005).
[38] Day D, Gu M. Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses[J]. Optics Express, 13, 5939-5946(2005).
[39] Roth G L, Esen C, Hellmann R. Femtosecond laser direct generation of 3D-microfluidic channels inside bulk PMMA[J]. Optics Express, 25, 18442-18450(2017).
[40] Roth G L, Esen C, Hellmann R. Vertical microchannels for microfluidic multilayer interconnections in PMMA[J]. Journal of Laser Micro Nanoengineering, 13, 155-159(2018).
[41] Roth G L, Esen C, Hellmann R. Control of femtosecond laser generated microfluidic channels inside poly(methyl methacrylate)[J]. Journal of Laser Applications, 30, 032016(2018).
[42] Yao Z L, Jiang L, Li X W et al. Non-diffraction-length, tunable, Bessel-like beams generation by spatially shaping a femtosecond laser beam for high-aspect-ratio micro-hole drilling[J]. Optics Express, 26, 21960-21968(2018).
[43] Roth G L, Rung S, Esen C et al. Microchannels inside bulk PMMA generated by femtosecond laser using adaptive beam shaping[J]. Optics Express, 28, 5801-5811(2020).
[44] Bao B, Riordon J, Mostowfi F et al. Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas[J]. Lab on a Chip, 17, 2740-2759(2017).
[45] Anbari A, Chien H T, Datta S S et al. Microfluidic model porous media: fabrication and applications[J]. Small, 14, 1703575(2018).
[46] Kam D H, Shah L, Mazumder J. Femtosecond laser machining of multi-depth microchannel networks onto silicon[J]. Journal of Micromechanics and Microengineering, 21, 045027(2011).
[47] Hayden C J. A simple three-dimensional computer simulation tool for predicting femtosecond laser micromachined structures[J]. Journal of Micromechanics and Microengineering, 20, 025010(2010).
[48] Owusu-Ansah E, Dalton C. Fabrication of a 3D multi-depth reservoir micromodel in borosilicate glass using femtosecond laser material processing[J]. Micromachines, 11, 1082(2020).
[49] Liu Y F, Block E, Squier J et al. Investigating low salinity waterflooding via glass micromodels with triangular pore-throat architectures[J]. Fuel, 283, 119264(2021).
[50] Shan C, Chen F, Yang Q et al. 3D multi-microchannel helical mixer fabricated by femtosecond laser inside fused silica[J]. Micromachines, 9, 29(2018).
[52] Qi J, Li W B, Chu W et al. A microfluidic mixer of high throughput fabricated in glass using femtosecond laser micromachining combined with glass bonding[J]. Micromachines, 11, 213(2020).
[53] Tokas S, Zunaid M, Ansari M A. Non-Newtonian fluid mixing in a three-dimensional spiral passive micromixer[J]. Materials Today: Proceedings, 47, 3947-3952(2021).
[54] Lin Z J, Xu J, Song Y P et al. Freeform microfluidic networks encapsulated in laser-printed 3D macroscale glass objects[J]. Advanced Materials Technologies, 5, 1900989(2020).
[55] Sima F, Serien D, Wu D et al. Micro and nano-biomimetic structures for cell migration study fabricated by hybrid subtractive and additive 3D femtosecond laser processing[J]. Proceedings of SPIE, 10092, 1009207(2017).
[56] Shan C, Zhang C J, Liang J et al. 3D integrated coreless microtransformer processed by femtosecond laser micro/nano fabrication[J]. Journal of Micromechanics and Microengineering, 30, 105002(2020).
[57] Shan C, Yang Q, Bian H et al. Fabrication of three-dimensional microvalves of internal nested structures inside fused silica[J]. Micromachines, 12, 43(2021).
[58] Wong S, Deubel M, Pérez-Willard F et al. Direct laser writing of three- dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses[J]. Advanced Materials, 18, 265-269(2006).
[59] Liu K Y, Zhao Y L, Yang Q et al. Fabrication of three-dimensional metallic microcomponents in fused silica by a femtosecond laser & micromoulding (FLM) method[C], 677-680(2013).
[60] Meng X W, Yang Q, Chen F et al. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics[J]. Proceedings of SPIE, 9449, 94493N(2015).
[61] Xu J, Midorikawa K, Sugioka K. Femtosecond laser fabricated electrofluidic devices in glass for 3D manipulation of biological samples[J]. Proceedings of SPIE, 9735, 97350B(2016).
[62] Bian H, Shan C, Chen F et al. Miniaturized 3-D solenoid-type micro-heaters in coordination with 3-D microfluidics[J]. Journal of Microelectromechanical Systems, 26, 588-592(2017).
[63] Xu J, Li X L, Zhong Y et al. Glass-channel molding assisted 3D printing of metallic microstructures enabled by femtosecond laser internal processing and microfluidic electroless plating[J]. Advanced Materials Technologies, 3, 1800372(2018).
[64] Shan C, Zhang C J, Liang J et al. Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application[J]. Optics Express, 28, 25716-25722(2020).
[65] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).
[66] Bai S, Serien D, Hu A M et al. 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances[J]. Advanced Functional Materials, 28, 1706262(2018).
[67] Wu D, Wang J N, Wu S Z et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 21, 2927-2932(2011).
[68] Guo L, Hao Y W, Li P L et al. Improved NO2 gas sensing properties of graphene oxide reduced by two-beam-laser interference[J]. Scientific Reports, 8, 4918(2018).
[69] Lin B C, Qin J H. Laboratory on a microfluidic chip[J]. Chinese Journal of Chromatography, 23, 456-463(2005).
[70] Fang Q. Microfluidic analysis and screening based on sequential droplet array technology[C], 20(2014).
[71] Lin J M[M]. Cell Analysis on microfluidics(2017).
[72] Hou L K, Ren Y K, Jia Y K et al. Continuously electrotriggered core coalescence of double-emulsion drops for microreactions[J]. ACS Applied Materials & Interfaces, 9, 12282-12289(2017).
[73] Qu Y Y, Deng J, Wang S et al. New method for drug toxicity identification based on kidney, liver and heart chips[C], 55(2017).
[74] Fu F F, Shang L R, Chen Z Y et al. Bioinspired living structural color hydrogels[J]. Science Robotics, 3, eaar8580(2018).