• Nano-Micro Letters
  • Vol. 16, Issue 1, 011 (2024)
Huiqi Zhao1,3, Yizheng Zhang2, Lei Han2, Weiqi Qian1,3..., Jiabin Wang1,5, Heting Wu1, Jingchen Li2, Yuan Dai2,*, Zhengyou Zhang2, Chris R. Bowen4 and Ya Yang1,3,5,**|Show fewer author(s)
Author Affiliations
  • 1CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People’s Republic of China
  • 2Tencent Robotics X, Shenzhen, 518054, People’s Republic of China
  • 3School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
  • 4Department of Mechanical Engineering, University of Bath, Bath BA2 7AK, UK
  • 5Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01216-0 Cite this Article
    Huiqi Zhao, Yizheng Zhang, Lei Han, Weiqi Qian, Jiabin Wang, Heting Wu, Jingchen Li, Yuan Dai, Zhengyou Zhang, Chris R. Bowen, Ya Yang. Intelligent Recognition Using Ultralight Multifunctional Nano-Layered Carbon Aerogel Sensors with Human-Like Tactile Perception[J]. Nano-Micro Letters, 2024, 16(1): 011 Copy Citation Text show less
    References

    [1] B.E. Stein, T.R. Stanford, Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266 (2008).

    [2] N. Fazeli, M. Oller, J. Wu, Z. Wu, J.B. Tenenbaum, A. Rodriguez, See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion. Sci. Robot. 4, eaav3123 (2019).

    [3] J. Pesnot Lerousseau, C.V. Parise, M.O. Ernst, V. van Wassenhove, Multisensory correlation computations in the human brain identified by a time-resolved encoding model. Nat. Commun. 13, 2489 (2022).

    [4] H. Tan, Y. Zhou, Q. Tao, J. Rosen, S. van Dijken, Bioinspired multisensory neural network with crossmodal integration and recognition. Nat. Commun. 12, 1120 (2021).

    [5] A. Billard, D. Kragic, Trends and challenges in robot manipulation. Science 364, eaat8414 (2019).

    [6] H. Sun, K.J. Kuchenbecker, G. Martius, A soft thumb-sized vision-based sensor with accurate all-round force perception. Nat. Mach. Intell. 4, 135–145 (2022).

    [7] M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020).

    [8] P. Dudek, T. Richardson, L. Bose, S. Carey, J. Chen et al., Sensor-level computer vision with pixel processor arrays for agile robots. Sci. Robot. 7, eabl7755 (2022).

    [9] B. Peters, N. Kriegeskorte, Capturing the objects of vision with neural networks. Nat. Hum. Behav. 5, 1127–1144 (2021).

    [10] K. Nasr, P. Viswanathan, A. Nieder, Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. Sci. Adv. 5, eaav7903 (2019).

    [11] M. Liu, Y. Zhang, J. Wang, N. Qin, H. Yang et al., A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat. Commun. 13, 79 (2022).

    [12] Y. Yu, J. Li, A. Solomon Samuel, J. Min, J. Tu et al., All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 7, eabn0495 (2022).

    [13] Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, abb9083 (2020).

    [14] K. Park, H. Yuk, M. Yang, J. Cho, H. Lee et al., A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing. Sci. Robot. 7, eabm7187 (2022).

    [15] Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4, 193–201 (2021).

    [16] Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13, 5224 (2022).

    [17] S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4, 429–438 (2021).

    [18] G. Li, S. Liu, L. Wang, R. Zhu, Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 5, eabc8134 (2020).

    [19] Y. Roh, M. Kim, S.M. Won, D. Lim, I. Hong et al., Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper. Sci. Robot. 6, eabi6774 (2021).

    [20] Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian et al., Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 30, 1909603 (2020).

    [21] B. Wang, X. Lai, H. Li, C. Jiang, J. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13, 23020–23029 (2021).

    [22] L. Groo, D.J. Inman, H.A. Sodano, In situ damage detection for fiber-reinforced composites using integrated zinc oxide nanowires. Adv. Funct. Mater. 28, 1802846 (2018).

    [23] J. Wen, J. Tang, H. Ning, N. Hu, Y. Zhu et al., Multifunctional ionic skin with sensing, UV-filtering, water-retaining, and anti-freezing capabilities. Adv. Funct. Mater. 31, 2011176 (2021).

    [24] C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3, eaau6914 (2018).

    [25] O. Feinerman, I. Pinkoviezky, A. Gelblum, E. Fonio, N.S. Gov, The physics of cooperative transport in groups of ants. Nat. Phys. 14, 683–693 (2018).

    [26] T. Li, A.D. Pickel, Y. Yao, Y. Chen, Y. Zeng et al., Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. Nat. Energy 3, 148–156 (2018).

    [27] C. Leovy, Weather and climate on Mars. Nature 412, 245–249 (2001).

    [28] L.K. Fenton, P.E. Geissler, R.M. Haberle, Global warming and climate forcing by recent albedo changes on Mars. Nature 446, 646–649 (2007).

    [29] A.S. Yen, R. Gellert, C. Schröder, R.V. Morris, J.F. Bell et al., An integrated view of the chemistry and mineralogy of martian soils. Nature 436, 49–54 (2005).

    [30] R. Rieder, T. Economou, H. Wänke, A. Turkevich, J. Crisp et al., The chemical composition of martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science 278, 1771–1774 (1997).

    [31] D. Clery, Lake spied deep below polar ice cap on Mars. Science 361, 320–320 (2018).

    [32] A. Diez, Liquid water on Mars. Science 361, 448–449 (2018).

    [33] R. Orosei, S.E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini et al., Radar evidence of subglacial liquid water on Mars. Science 361, 490–493 (2018).

    [34] S.E. Lauro, E. Pettinelli, G. Caprarelli, L. Guallini, A.P. Rossi et al., Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat. Astron. 5, 63–70 (2021).

    [35] Y. Liu, X. Wu, Y.-Y.S. Zhao, L. Pan, C. Wang et al., Zhurong reveals recent aqueous activities in Utopia Planitia. Mars. Sci. Adv. 8, eabn8555 (2022).

    [36] H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30, 1706705 (2018).

    [37] Z. Sun, M. Zhu, Z. Zhang, Z. Chen, Q. Shi et al., Artificial intelligence of things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv. Sci. 8, 2100230 (2021).

    [38] X. Qu, Z. Liu, P. Tan, C. Wang, Y. Liu et al., Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 8, eabq2521 (2022).

    [39] H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu et al., A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. J. Mater. Chem. A 7, 8092–8100 (2019).

    [40] Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu et al., Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010).

    [41] I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020).

    [42] J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1, e1500661 (2015).

    [43] C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020).

    [44] H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019).

    [45] Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013).

    [46] Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017).

    Huiqi Zhao, Yizheng Zhang, Lei Han, Weiqi Qian, Jiabin Wang, Heting Wu, Jingchen Li, Yuan Dai, Zhengyou Zhang, Chris R. Bowen, Ya Yang. Intelligent Recognition Using Ultralight Multifunctional Nano-Layered Carbon Aerogel Sensors with Human-Like Tactile Perception[J]. Nano-Micro Letters, 2024, 16(1): 011
    Download Citation