• Acta Laser Biology Sinica
  • Vol. 28, Issue 3, 239 (2019)
PENG Han’ge1,2, ZHOU Tiean1,2,*, TAN Chengfang1,2, and TU Boxuan1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-7146.2019.03.005 Cite this Article
    PENG Han’ge, ZHOU Tiean, TAN Chengfang, TU Boxuan. Real-Time Monitoring of Viscoelastic Changes of Neonatal Rat Primary Cardiomyocytes Subjected to the Treatments of Different Concentrations of Inotropic Drugs Using Quartz Crystal Microbalance[J]. Acta Laser Biology Sinica, 2019, 28(3): 239 Copy Citation Text show less
    References

    [1] MA Liyuan, WU Yazhe, WANG Wen, et al. Interpretation of key points in China cardiovascular disease report 2017[J]. Chinese Journal of Cardiovascular Sciences, 2018, 23(01): 3-6.

    [2] PIEPOLI M F, HOES A W, AGEWALLL S, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice[J]. European Heart Journal, 2016, 37(29): 2315-2381.

    [3] KUNZE A, STEEL D, DAHLENBORG K, et al. Non-invasive acoustical sensing of drug-induced effects on the contractile machinery of human cardiomyocyte clusters[J]. PloS One, 2015, 10(5): e0125540.

    [4] ROSANO G, LEWIS B, AGEWALL S, et al. Gender differences in the effect of cardiovascular drugs: a position document of the working group on pharmacology and drug therapy of the ESC[J]. European Heart Journal, 2015, 36(40): 2677-2680.

    [5] SURESH S. Biomechanics and biophysics of cancer cells[J]. Acta Materialia, 2007, 55(12): 3989-4014.

    [6] ISKRATSCH T, WOLFENSON H, SHEETZ M P. Appreciating force and shape-the rise of mechanotransduction in cell biology[J]. Nature Reviews Molecular Cell Biology, 2014, 15(12): 825-833.

    [7] IVASHCHENKO C Y, PIPES G C, LOZINSKAYA I M, et al. Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2013, 305(6): H913-H922.

    [8] ESCH E W, ANTHONY B, DONGEUN H. Organs-on-chips at the frontiers of drug discovery[J]. Nature Reviews Drug Discovery, 2015, 14(04): 248-261.

    [9] ZHU Ye, ZHANG Yuehui, CHEN Ming. Research status of atomic force microscopy measurement of young’s modulus in cardiac myocytes[J]. Chinese Journal of Iomedical Engineering, 2014, 33(01): 93-97.

    [10] CHI Luxiang, YANG Zongcheng, LI Ao, et al. Myocardial cell mechanics experiment using microtubule sucking technique[J]. Journal of the Third Military Medical University, 1998, 20(5): 22-24.

    [11] KANG H W, OTANI N, HIROSHI M, et al. Investigation of the extracellular matrix effect for the QCM/CCD cell activity monitoring system[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(8): 5777-5784.

    [12] GUILAK F, TEDROW J R, BURGKART R. Viscoelastic properties of the cell nucleus[J]. Biochemical and Biophysical Research Communications, 2000, 269(3): 781-786.

    [13] MARX K A, ZHOU T, MONTRONE A, et al. A quartz crystal microbalance cell biosensor: detection of microtubule alterations in living cells at nM nocodazole concentrations[J]. Biosensors and Bioelectronics, 2001, 16(9-12): 773-782.

    [14] HE Jian’an, FU Long, HUANG Mo, et al. New progress of quartz crystal microbalance[J]. Chinese Science:Chemistry, 2011, 41(11): 1679-1698.

    [15] SU Chen, LI Guoyang, LIU Dong, et al. Correlation between viscoelastic parameters and degree of fatty liver in rats[J]. Chinese Medical Equipment, 2008, 15(11): 13-17.

    [16] WEGENER J, JANSHOFF A, GALLA H J. Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines[J]. European Biophysics Journal, 1998, 28(1): 26-37.

    [17] GRYTE D M, WARD M D, HU W S. Real-time measurement of anchorage-dependent cell adhesion using a quartz crystal microbalance[J]. Biotechnology Progress, 1993, 9(1): 105-108.

    [18] STRATTON D, LANGE S, KHOLIA S, et al. Label-free real-time acoustic sensing of microvesicle release from prostate cancer (PC3)cells using a quartz crystal microbalance[J]. Biochemical and Biophysical Research Communications, 2014, 453(3): 619-624.

    [19] KUNZE A, STEEL D, DAHLENBORG K, et al. Non-invasive acoustical sensing of drug-induced effects on the contractile machinery of human cardiomyocyte clusters[J]. PloS One, 2015, 10(5): e0125540.

    [20] ZHOU T, MARX K A, DEWILDE A H, et al. Dynamic cell adhesion and viscoelastic signatures distinguish normal from malignant human mammary cell using quartz crystal microbalance[J]. Analytical Biochemistry, 2012, 421(1): 164-171.

    [21] ZHOU Zhen, ZHOU Tiean, SHAN Mei, et al. QCM monitoring of myocardial cell adhesion on self-assembled membrane and its effects on cardiovascular drugs[J]. Advances in Modern Biomedicine, 2016, 16(1): 58-62.

    [22] ZHOU T, ZHOU Z, ZHOU S, et al. Real-time monitoring of contractile properties of H9C2 cardiomyoblasts by using a quartz crystal microbalance[J]. Analytical Methods, 2015, 8(3): 488-495.

    [23] WANG T, HU N, CAO J, et al. A cardiomyocyte-based biosensor for antiarrhythmic drug evaluation by simultaneously monitoring cell growth and beating[J]. Biosensors and Bioelectronics, 2013, 49(03): 9-13.

    [24] PAX M, RIEGER J, EIBL R H, et al. Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance[J]. Analyst, 2005, 130(11): 1474-1477.

    PENG Han’ge, ZHOU Tiean, TAN Chengfang, TU Boxuan. Real-Time Monitoring of Viscoelastic Changes of Neonatal Rat Primary Cardiomyocytes Subjected to the Treatments of Different Concentrations of Inotropic Drugs Using Quartz Crystal Microbalance[J]. Acta Laser Biology Sinica, 2019, 28(3): 239
    Download Citation