• Laser & Optoelectronics Progress
  • Vol. 60, Issue 16, 1615008 (2023)
Meng Xia, Hongzhi Du, Jiarui Lin, Yanbiao Sun*, and Jigui Zhu
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP223015 Cite this Article Set citation alerts
    Meng Xia, Hongzhi Du, Jiarui Lin, Yanbiao Sun, Jigui Zhu. Object Pose Estimation Method Based on Keypoint Distance Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1615008 Copy Citation Text show less
    Overview of pose estimation
    Fig. 1. Overview of pose estimation
    Backbone network module
    Fig. 2. Backbone network module
    Feature fusion structure
    Fig. 3. Feature fusion structure
    Confidence network
    Fig. 4. Confidence network
    Flow chart of reasoning calculation
    Fig. 5. Flow chart of reasoning calculation
    Visualization results. (a) LineMOD dataset; (b) YCB-Video dataset
    Fig. 6. Visualization results. (a) LineMOD dataset; (b) YCB-Video dataset
    Comparison of pose estimation results
    Fig. 7. Comparison of pose estimation results
    ObjectPoseCNNPVNetDenseFusionG2L-NetProposed method
    mean88.686.394.398.799.8
    ape77.043.692.396.898.7
    benchvise97.599.993.296.1100.0
    camera93.586.994.498.299.9
    can96.595.593.198.0100.0
    cat82.179.396.599.299.9
    driller95.096.487.099.8100.0
    duck77.752.692.397.798.6
    eggbox97.199.299.8100.0100.0
    glue99.495.7100.0100.099.9
    holepuncher52.882.092.199.0100.0
    iron98.398.997.099.3100.0
    lamp97.599.395.399.5100.0
    phone87.792.492.898.9100.0
    Table 1. Test results on LineMOD dataset [10%d-ADD(S)]
    ObjectPoseCNNDenseFusionGDR-NetProposed method
    ADD-SADD(S)ADD-SADD(S)ADD-SADD(S)ADD-SADD(S)
    mean75.959.991.282.991.684.394.190.1
    02 master chef can83.950.295.370.796.365.295.177.7
    03 cracker box76.953.192.586.997.088.893.989.4
    04 sugar box84.268.495.190.898.995.096.594.4
    05 tomato soup can81.066.293.884.796.591.994.989.2
    06 mustard bottle90.481.095.890.9100.092.896.894.7
    07 tuna fish can88.070.795.779.699.494.295.090.3
    08 pudding box79.162.794.389.364.644.793.987.4
    09 gelatin box87.275.297.295.897.192.597.094.8
    10 potted meat can78.559.589.379.686.080.289.981.8
    11 banana86.072.390.076.796.385.895.291.1
    19 pitcher base77.053.393.687.199.998.596.694.9
    21 bleach cleanser71.650.394.487.594.284.395.090.6
    24 bowl69.669.686.086.085.785.788.188.1
    25 mug78.258.595.383.899.694.096.892.5
    35 power drill72.755.392.183.797.590.195.692.7
    36 wood block64.364.389.589.582.582.590.590.5
    37 scissors56.935.890.177.463.849.593.689.9
    40 large marker71.758.395.189.188.076.195.085.3
    51 large clamp50.250.271.571.589.389.393.393.3
    52 extra large clamp44.144.170.270.293.593.588.288.2
    61 foam brick88.088.092.292.296.996.995.895.8
    Table 2. Test results on YCB-Video dataset [AUC-ADD(S)]
    DatasetResNetProposed module
    LineMOD99.699.8
    YCB-Video,ADD-S92.194.1
    YCB-Video,ADD(S)86.590.1
    Table 3. Accuracy comparison of different backbone network modules
    ModuleResNetProposed module
    Parameters /MB33.715.4
    Table 4. Feature network parameters of different backbone network modules
    DatasetWithout data processingWith data processing
    LineMOD96.196.6
    YCB-Video,ADD-S93.594.1
    YCB-Video,ADD(S)88.390.1
    Table 5. Comparison of results with or without data processing
    Meng Xia, Hongzhi Du, Jiarui Lin, Yanbiao Sun, Jigui Zhu. Object Pose Estimation Method Based on Keypoint Distance Network[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1615008
    Download Citation