• Laser & Optoelectronics Progress
  • Vol. 60, Issue 14, 1412003 (2023)
Zheng Tang, Huilin Zhang, and Lixin Ma*
Author Affiliations
  • School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/LOP222422 Cite this Article Set citation alerts
    Zheng Tang, Huilin Zhang, Lixin Ma. Defect Detection for Solar Cells using Dense Backbone Network Algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(14): 1412003 Copy Citation Text show less
    Electroluminescence test procedure
    Fig. 1. Electroluminescence test procedure
    Defect image classification. (a) Single crystal silicon crack; (b) polysilicon crack; (c) single crystal silicon finger-interruption; (d) polysilicon finger-interruption
    Fig. 2. Defect image classification. (a) Single crystal silicon crack; (b) polysilicon crack; (c) single crystal silicon finger-interruption; (d) polysilicon finger-interruption
    YOLOv4 network structure
    Fig. 3. YOLOv4 network structure
    Detection results of the proposed algorithm
    Fig. 4. Detection results of the proposed algorithm
    Detection results of the YOLOv4 algorithm
    Fig. 5. Detection results of the YOLOv4 algorithm
    AP value comparison
    Fig. 6. AP value comparison
    Loss value curve
    Fig. 7. Loss value curve
    F1 value of crack
    Fig. 8. F1 value of crack
    F1 value of finger-interruption
    Fig. 9. F1 value of finger-interruption
    LayerModuleStrideOutput size
    Convolution7×7 Conv2800×800
    Pooling7×7 max pooling2400×400
    Dense block

    (1×1 Conv)×6

    (3×3 Conv)×6

    400×400
    Transition layer1×1 Conv1400×400
    2×2 average pooling2200×200
    Dense block

    (1×1 Conv)×12

    (3×3 Conv)×12

    200×200
    Transition layer1×1 Conv1200×200
    2×2 average pooling2100×100
    Dense block

    (1×1 Conv)×24

    (3×3 Conv)×24

    100×100
    Transition layer1×1 Conv1100×100
    2×2 average pooling250×50
    Dense block

    (1×1 Conv)×16

    (3×3 Conv)×16

    50×50
    Classification layer1×1
    Table 1. DenseNet121 model parameters
    ParameterValue
    Input size800×800
    Freeze training epoch100
    Freeze training learning rate0.001
    Unfreeze training epoch100
    Unfreeze training learning rate0.0001
    Label_smoothing0.005
    NTNV4∶1
    Table 2. Model parameter setting
    AlgorithmDefectTPFPFN
    Proposed algorithmFinger-interruption314855163
    crack186532551
    YOLOv4Finger-interruption3027711184
    crack1772474144
    Efficientnet-YOLOv3Finger-interruption2907912304
    crack1645864271
    YOLOv4-tinyFinger-interruption2953735258
    crack1659589257
    Faster-rcnnFinger-interruption277517236441
    crack172110879195
    YOLOv5Finger-interruption3097596114
    crack182741289
    Table 3. Comparison of detection results of different algorithms
    GhostnetMobilenetv1CSPDarkNet53DenseNet121NMSSofter-NMSmAP /%Speed /(frame·s-1TPFPFN
    87.1422.7347991185328
    90.3730.1649081002219
    90.2419.6549261096206
    93.0827.355013876114
    81.9528.4246111328516
    84.2628.8746851127442
    Table 4. Ablation experiment
    AlgorithmmAP /%Speed/(frame·s-1Param /MB
    Proposed algorithm93.0827.35160.4
    YOLOv487.1422.73244.6
    Efficientnet-YOLOv384.0223.20154.1
    YOLOv4-tiny83.36113.522.6
    Faster-rcnn63.4812.06108.7
    YOLOv590.2119.47335.3
    Table 5. Comparison of model indicators
    Zheng Tang, Huilin Zhang, Lixin Ma. Defect Detection for Solar Cells using Dense Backbone Network Algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(14): 1412003
    Download Citation