[1] Fan C H. Research on highly efficient system for surface defects detection of solar cells[D], 12-17(2019).
[2] Liu Y, Chen M Z, Xu S B et al. Defect detection method for photovoltaic arrays based on thermal imaging and gray conversion technology[J]. Electronic Measurement Technology, 44, 96-102(2021).
[3] Wang Y L. Defect detection of solar panels based on infrared thermal imaging[D], 8-14(2015).
[4] Belyaev A, Polupan O, Ostapenko S et al. Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers[J]. Semiconductor Science and Technology, 21, 254-260(2006).
[5] Dallas W, Polupan O, Ostapenko S. Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers[J]. Measurement Science and Technology, 18, 852-858(2007).
[6] Dhimish M, Holmes V. Solar cells micro crack detection technique using state-of-the-art electroluminescence imaging[J]. Journal of Science: Advanced Materials and Devices, 4, 499-508(2019).
[7] Olsen E, Flø A S. Spectral and spatially resolved imaging of photoluminescence in multicrystalline silicon wafers[J]. Applied Physics Letters, 99, 011903(2011).
[8] Yu B. Implementation of motion control module and study on crack identification algorithm in the solar cell detection system[D], 20-24(2010).
[9] Zhou D Y, Gao L Q. Solar panel defect detection based on YOLOv3[J]. China Southern Agricultural Machinery, 53, 142-144(2022).
[10] Ma G Y, Zhang H M, Shi J C et al. Study of electroluminescence imaging as a method to detect the defects of solar cells[J]. Optoelectronic Technology, 40, 213-216(2020).
[11] Chen H Y, Zhao H F, Han D et al. Accurate and robust crack detection using steerable evidence filtering in electroluminescence images of solar cells[J]. Optics and Lasers in Engineering, 118, 22-33(2019).
[12] Tang W Q, Yang Q, Xiong K X et al. Deep learning based automatic defect identification of photovoltaic module using electroluminescence images[J]. Solar Energy, 201, 453-460(2020).
[13] Deitsch S, Christlein V, Berger S et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 185, 455-468(2019).
[14] Li B, Wang C, Wu J et al. Surface defect detection of aeroengine components based on improved YOLOv4 algorithm[J]. Laser & Optoelectronics Progress, 58, 1415004(2021).
[15] Zeng F L, Hu W J, He G Y et al. Thangka image classification based on DenseNet[J]. Modern Electronics Technique, 45, 153-157(2022).
[16] Zhang C L, Zhang C W, Wang H Y et al. Research on non-maximum suppression based on attention mechanism in object detection[J]. Electronic Measurement Technology, 44, 82-88(2021).
[17] Gao J C, Zhang J H, Li Y N et al. Insulator burst fault identification based on YOLOv4[J]. Laser & Optoelectronics Progress, 59, 0210005(2022).