• Nano-Micro Letters
  • Vol. 16, Issue 1, 010 (2024)
Tianxun Cai1,3, Mingzhi Cai2, Jinxiao Mu1,3, Siwei Zhao2..., Hui Bi1, Wei Zhao1,4, Wujie Dong1 and Fuqiang Huang1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
  • 2State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
  • 4Zhongke Institute of Strategic Emerging Materials, Yixing, 214213 Jiangsu, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01232-0 Cite this Article
    Tianxun Cai, Mingzhi Cai, Jinxiao Mu, Siwei Zhao, Hui Bi, Wei Zhao, Wujie Dong, Fuqiang Huang. High-Entropy Layered Oxide Cathode Enabling High-Rate for Solid-State Sodium-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 010 Copy Citation Text show less
    References

    [1] X.L. Deng, K.Y. Zou, R. Momen, P. Cai, J. Chen et al., High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66(18), 1858–1868 (2021).

    [2] R. Usiskin, Y.X. Lu, J. Popovic, M. Law, P. Balaya et al., Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6(11), 1020–1035 (2021).

    [3] Z. Guo, G. Qian, C. Wang, G. Zhang, R. Yin et al., Progress in electrode materials for the industrialization of sodium-ion batteries. Prog. Nat. Sci. Mater. 33, 1 (2022).

    [4] P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8(8), 23 (2018).

    [5] K. Kubota, S. Kumakura, Y. Yoda, K. Kuroki, S. Komaba, Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals). Adv. Energy Mater. 8(17), 40 (2018).

    [6] W. Zhu, J.C. Zhang, J.W. Luo, C.H. Zeng, H. Su et al., Ultrafast non-equilibrium synthesis of cathode materials for li-ion batteries. Adv. Mater. 35(2), 9 (2023).

    [7] X.G. Yuan, Y.J. Guo, L. Gan, X.A. Yang, W.H. He et al., A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for na-ion batteries. Adv. Funct. Mater. 32(17), 11 (2022).

    [8] M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015).

    [9] X.W. Li, X. Shen, J.M. Zhao, Y. Yang, Q.Q. Zhang et al., O3-NaFe((1/3−x))Ni(1/3)Mn(1/3)AlxO(2) cathodes with improved air stability for na-ion batteries. ACS Appl. Mater. Interfaces 13(28), 33015–33023 (2021).

    [10] F.X. Ding, Q.S. Meng, P.F. Yu, H.B. Wang, Y.S. Niu et al., Additive-free self-presodiation strategy for high-performance na-ion batteries. Adv. Funct. Mater. 31(26), 9 (2021).

    [11] Y.M. Li, Z.Z. Yang, S.Y. Xu, L.Q. Mu, L. Gu et al., Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv. Sci. 2(6), 7 (2015).

    [12] P.F. Wang, H.R. Yao, X.Y. Liu, J.N. Zhang, L. Gu et al., Ti-substituted NaNi0.5Mn0.5−xTixO2 cathodes with reversible O3–P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 29(19), 7 (2017).

    [13] X.Q. Huang, D.L. Li, H.J. Huang, X. Jiang, Z.H. Yang et al., Fast and highly reversible na+ intercalation/extraction in zn/mg dual-doped P2-Na0.67MnO2 cathode material for high-performance na-ion batteries. Nano Res. 14(10), 3531–3537 (2021).

    [14] Y.X. Wang, L.G. Wang, H. Zhu, J. Chu, Y.J. Fang et al., Ultralow-strain zn-substituted layered oxide cathode with suppressed P2–O2 transition for stable sodium ion storage. Adv. Funct. Mater. 30(13), 9 (2020).

    [15] H.R. Yao, P.F. Wang, Y. Gong, J.N. Zhang, X.Q. Yu et al., Designing air-stable O3-type cathode materials by combined structure modulation for na-ion batteries. J. Am. Chem. Soc. 139(25), 8440–8443 (2017).

    [16] X.Y. Du, Y. Meng, H.Y. Yuan, D. Xiao, High-entropy substitution: a strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties. Energy Storage Mater. 56, 132–140 (2023).

    [17] F. Fu, X. Liu, X.G. Fu, H.W. Chen, L. Huang et al., Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat. Commun. 13(1), 12 (2022).

    [18] L.B. Yao, P.C. Zou, C.Y. Wang, J.H. Jiang, L. Ma et al., High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries. Adv. Energy Mater. 12(41), 9 (2022).

    [19] F.X. Ding, C.L. Zhao, D.D. Xiao, X.H. Rong, H.B. Wang et al., Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144(18), 8286–8295 (2022).

    [20] C.L. Zhao, F.X. Ding, Y.X. Lu, L.Q. Chen, Y.S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020).

    [21] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8 (2015).

    [22] A. Sarkar, L. Velasco, D. Wang, Q.S. Wang, G. Talasila et al., High entropy oxides for reversible energy storage. Nat. Commun. 9, 9 (2018).

    [23] M. Botros, J. Janek, Embracing disorder in solid-state batteries. Science 378(6626), 1273–1274 (2022).

    [24] H.J. Wang, X. Gao, S. Zhang, Y. Mei, L.S. Ni et al., High-entropy na-deficient layered oxides for sodium-ion batteries. ACS Nano 17, 12530 (2023).

    [25] S.Y. Zhang, Y.J. Guo, Y.N. Zhou, X.D. Zhang, Y.B. Niu et al., P3/O3 integrated layered oxide as high-power and long-life cathode toward na-ion batteries. Small 17(10), 7 (2021).

    [26] J.Y. Hwang, S.M. Oh, S.T. Myung, K.Y. Chung, I. Belharouak et al., Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 9 (2015).

    [27] P.F. Zhou, Z.N. Che, J. Liu, J.K. Zhou, X.Z. Wu et al., High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 57, 618–627 (2023).

    [28] L.X. Shen, Y. Jiang, Y.F. Liu, J.L. Ma, T.R. Sun et al., High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem. Eng. J. 388, 9 (2020).

    [29] W.J. Dong, B. Ye, M.Z. Cai, Y.Z. Bai, M. Xie et al., Superwettable high-voltage LiCOO2 for low- temperature lithium ion batteries. ACS Energy Lett. 8(2), 881–888 (2023).

    [30] C. Zeng, C. Duan, Z. Guo, Z. Liu, S. Dou et al., Ultrafastly activated needle coke as electrode material for supercapacitors. Prog. Nat. Sci. Mater. Inter. 32(6), 786–792 (2022).

    [31] Y.Y. Xie, G.L. Xu, H.Y. Che, H. Wang, K. Yang et al., Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mat. 30(15), 4909–4918 (2018).

    [32] H.R. Yao, X.G. Yuan, X.D. Zhang, Y.J. Guo, L.T. Zheng et al., Excellent air storage stability of na-based transition metal oxide cathodes benefiting from enhanced na-o binding energy. Energy Storage Mater. 54, 661–667 (2023).

    [33] W.H. Zuo, J.M. Qiu, X.S. Liu, F.C. Ren, H.D. Liu et al., The stability of p2-layered sodium transition metal oxides in ambient atmospheres. Nat. Commun. 11(1), 12 (2020).

    [34] Y.J. Guo, P.F. Wang, Y.B. Niu, X.D. Zhang, Q.H. Li et al., Boron-doped sodium layered oxide for reversible oxygen redox reaction in na-ion battery cathodes. Nat. Commun. 12(1), 11 (2021).

    [35] F.X. Ding, C.L. Zhao, D. Zhou, Q.S. Meng, D.D. Xiao et al., A novel ni-rich O3-na Ni0.60Fe0.25M0.15 O-2 cathode for na-ion batteries. Energy Storage Mater. 30, 420–430 (2020).

    [36] J. Pan, S.M. Xu, T.X. Cai, L.L. Hu, X.L. Che et al., Boosting cycling stability of polymer sodium battery by “rigid- flexible” coupled interfacial stress modulation. Nano Lett. 23(8), 3630–3636 (2023).

    Tianxun Cai, Mingzhi Cai, Jinxiao Mu, Siwei Zhao, Hui Bi, Wei Zhao, Wujie Dong, Fuqiang Huang. High-Entropy Layered Oxide Cathode Enabling High-Rate for Solid-State Sodium-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 010
    Download Citation