• Laser & Optoelectronics Progress
  • Vol. 62, Issue 3, 0300001 (2025)
Luotian Huang*, Gengqin Liang, Zongge Li, Peiguang Yan, and Jinchuan Guo
Author Affiliations
  • Guangdong Province Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong , China
  • show less
    DOI: 10.3788/LOP241171 Cite this Article Set citation alerts
    Luotian Huang, Gengqin Liang, Zongge Li, Peiguang Yan, Jinchuan Guo. Research Progress on Tunable Narrow Linewidth Semiconductor Lasers Integrated with External Cavity[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0300001 Copy Citation Text show less
    References

    [1] Wu W R, Chen M, Zhang Z et al. Overview of deep space laser communication[J]. Science China Information Sciences, 61, 040301(2017).

    [2] Sato T, Yamaoto F, Tsuji K et al. An uncooled external cavity diode laser for coarse-WDM access network systems[J]. IEEE Photonics Technology Letters, 14, 1001-1003(2002).

    [3] Sugiyama T, Ueda T. In-situ measurement for gas concentrations using tunable lasers[J]. IEEJ Transactions on Sensors and Micromachines, 126, 464-468(2006).

    [4] Chen F, Cui B F, Feng J Y et al. Research and progress of high-power semiconductor lasers with high beam quality[J]. Laser & Optoelectronics Progress, 60, 2100002(2023).

    [5] Wan H R, Yang Y L, Qiao Z L et al. Design and simulation of silicon-based tunable external cavity diode lasers in the 1967-2033 nm wavelength range[J]. Chinese Journal of Lasers, 51, 0601010(2024).

    [6] Zhang Y S, Zhao T F, Shi J Q et al. Monolithic integrated two-section dual-wavelength distributed feedback semiconductor laser[J]. Acta Optica Sinica, 43, 1014002(2023).

    [7] Deng L H, Yan B Y, Liang W. Continuous tunable narrow linewidth external cavity semiconductor laser[J]. Chinese Journal of Lasers, 50, 2315001(2023).

    [8] Chen C, Wei F, Su Q S et al. Realization of 220 mW power output by hybrid integrated narrow linewidth semiconductor laser[J]. Chinese Journal of Lasers, 50, 0316002(2023).

    [9] Bai Z X, Zhao Z A, Tian M H et al. A comprehensive review on the development and applications of narrow-linewidth lasers[J]. Microwave and Optical Technology Letters, 64, 2244-2255(2022).

    [10] Poulton C V, Yaacobi A, Cole D B et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays[J]. Optics Letters, 42, 4091-4094(2017).

    [11] Morton P A, Xiang C, Khurgin J B et al. Integrated coherent tunable laser (ICTL) with ultra-wideband wavelength tuning and sub-100 Hz lorentzian linewidth[J]. Journal of Lightwave Technology, 40, 1802-1809(2022).

    [12] Zhang G J, Cen Q Z, Hao T F et al. Self-injection locked silica external cavity narrow linewidth laser[J]. Journal of Lightwave Technology, 41, 2474-2483(2023).

    [13] Nemoto K, Kita T, Yamada H. Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators[J]. Applied Physics Express, 5, 082701(2012).

    [14] Du Y N, Chen C, Qin L et al. Narrow linewidth external cavity semiconductor laser based on silicon photonic chip[J]. Chinese Optics, 12, 229-241(2019).

    [15] Kondratiev N M, Lobanov V E, Shitikov A E et al. Recent advances in laser self-injection locking to high-Q microresonators[J]. Frontiers of Physics, 18, 21305(2023).

    [16] Patzak E, Sugimura A, Saito S et al. Semiconductor laser linewidth in optical feedback configurations[J]. Electronics Letters, 19, 1026-1027(1983).

    [17] Kazarinov R, Henry C. The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator[J]. IEEE Journal of Quantum Electronics, 23, 1401-1409(1987).

    [18] Vahala K, Yariv A. Detuned loading in coupled cavity semiconductor lasers: effect on quantum noise and dynamics[J]. Applied Physics Letters, 45, 501-503(1984).

    [19] Tran M A, Huang D N, Bowers J E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration[J]. APL Photonics, 4, 111101(2019).

    [20] Zhou J, He Z H, Yu X J et al. Optical transmission and electrical modulation for silicone semiconductor with multi-field effect[J]. Chinese Journal of Luminescence, 37, 63-73(2016).

    [21] Velichanskii V L, Zibrov A S, Kargopol’Tsev V S et al. Minimum line width of an injection laser[EB/OL]. https://www.osti.gov/biblio/6336783

    [22] Henry C. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 18, 259-264(1982).

    [23] Tkach R, Chraplyvy A. Regimes of feedback effects in 1.5-µm distributed feedback lasers[J]. Journal of Lightwave Technology, 4, 1655-1661(1986).

    [24] Dahmani B, Hollberg L, Drullinger R. Frequency stabilization of semiconductor lasers by resonant optical feedback[J]. Optics Letters, 12, 876-878(1987).

    [25] Hemmerich A, McIntyre D H, Schropp D et al. Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy[J]. Optics Communications, 75, 118-122(1990).

    [26] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes[J]. Physics Letters A, 137, 393-397(1989).

    [27] Ward J, Benson O. WGM microresonators: sensing, lasing and fundamental optics with microspheres[J]. Laser & Photonics Reviews, 5, 553-570(2011).

    [28] Lecaplain C, Javerzac-Galy C, Gorodetsky M L et al. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials[J]. Nature Communications, 7, 13383(2016).

    [29] Shitikov A E, Bilenko I A, Kondratiev N M et al. Billion Q-factor in silicon WGM resonators[J]. Optica, 5, 1525-1528(2018).

    [30] Thomson D, Zilkie A, Bowers J E et al. Roadmap on silicon photonics[J]. Journal of Optics, 18, 073003(2016).

    [31] Zhu D, Shao L B, Yu M J et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 13, 242-352(2021).

    [32] Chang L, Xie W Q, Shu H W et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 11, 1331(2020).

    [33] Jin W, Yang Q F, Chang L et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators[J]. Nature Photonics, 15, 346-353(2021).

    [34] Zhou Z P[M]. Silicon based optoelectronics(2012).

    [35] Sysak M N, Anthes J O, Liang D et al. A hybrid silicon sampled grating DBR tunable laser[C], 55-57(2008).

    [36] Hulme J C, Doylend J K, Bowers J E. Widely tunable Vernier ring laser on hybrid silicon[J]. Optics Express, 21, 19718-19722(2013).

    [37] Tran M A, Huang D N, Guo J et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1500514(2020).

    [38] Chu T, Fujioka N, Nakamura S et al. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators[J]. Optics Express, 17, 14063-14068(2009).

    [39] Lee J H, Shubin I, Yao J et al. High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links[J]. Optics Express, 22, 7678-7685(2014).

    [40] Kobayashi N, Sato K, Namiwaka M et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers[J]. Journal of Lightwave Technology, 33, 1241-1246(2015).

    [41] Tang R, Kita T, Yamada H. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach-Zehnder interferometer[J]. Optics Letters, 40, 1504-1507(2015).

    [42] Guan H, Novack A, Galfsky T et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication[J]. Optics Express, 26, 7920-7933(2018).

    [43] Gao Y K, Lo J C, Lee S et al. High-power, narrow-linewidth, miniaturized silicon photonic tunable laser with accurate frequency control[J]. Journal of Lightwave Technology, 38, 265-271(2020).

    [44] Brian Sia J X, Li X, Wang W J et al. Sub-kHz linewidth, hybrid III-V/silicon wavelength-tunable laser diode operating at the application-rich 1647-1690 nm[J]. Optics Express, 28, 25215-25224(2020).

    [45] Sia J X B, Wang W J, Qiao Z L et al. Compact silicon photonic hybrid ring external cavity (SHREC)/InGaSb-AlGaAsSb wavelength-tunable laser diode operating from 1881-1947 nm[J]. Optics Express, 28, 5134-5146(2020).

    [46] Guo J, Xiang C, Morin T J et al. E-band widely tunable, narrow linewidth heterogeneous laser on silicon[J]. APL Photonics, 8, 046114(2023).

    [47] Xiang C, Jin W, Huang D N et al. High-performance silicon photonics using heterogeneous integration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 8200515(2022).

    [48] Li N X, Chen G Y, Ng D K T et al. Integrated lasers on silicon at communication wavelength: a progress review[J]. Advanced Optical Materials, 10, 2201008(2022).

    [49] Zhang J, Muliuk G, Juvert J et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing[J]. APL Photonics, 4, 110803(2019).

    [50] Hu Y T, Liang D, Mukherjee K et al. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template[J]. Light: Science & Applications, 8, 93(2019).

    [51] Payne F P, Lacey J P R. A theoretical analysis of scattering loss from planar optical waveguides[J]. Optical and Quantum Electronics, 26, 977-986(1994).

    [52] Deki Y, Hatanaka T, Takahashi M et al. Wide-wavelength tunable lasers with 100 GHz FSR ring resonators[J]. Electronics Letters, 43, 225-226(2007).

    [53] Matsumoto T, Suzuki A, Takahashi M et al. Narrow spectral linewidth full band tunable laser based on waveguide ring resonators with low power consumption[C], OThQ5(2010).

    [54] Debregeas H, Ferrari C, Cappuzzo M A et al. 2 kHz linewidth C-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external cavity[C], 50-51(2014).

    [55] Verdier A, de Valicourt G, Brenot R et al. Ultrawideband wavelength-tunable hybrid external-cavity lasers[J]. Journal of Lightwave Technology, 36, 37-43(2018).

    [56] Zhao Y, Ji X C, Kim B Y et al. Visible nonlinear photonics via high-order-mode dispersion engineering[J]. Optica, 7, 135-141(2020).

    [57] Fan Y W, Epping J P, Oldenbeaving R M et al. Optically integrated InP-Si3N4 hybrid laser[J]. IEEE Photonics Journal, 8, 1505111(2016).

    [58] Fan Y W, Oldenbeuving R M, Hoekman M et al. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser[C](2017).

    [59] Fan Y W, van Rees A, van der Slot P J M et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth[J]. Optics Express, 28, 21713-21728(2020).

    [60] Lin Y, Browning C, Timens R B et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si 3N4/SiO2) microring resonators for optical coherent system[J]. IEEE Photonics Journal, 10, 1400108(2018).

    [61] Zhu Y Y, Zhu L. Narrow-linewidth, tunable external cavity dual-band diode lasers through InP/GaAs-Si3N4 hybrid integration[J]. Optics Express, 27, 2354-2362(2019).

    [62] Guo Y Y, Zhou L J, Zhou G Q et al. Edge-coupled III-V/Si3N4 hybrid external cavity laser[C](2019).

    [63] Guo Y Y, Zhou L J, Zhou G Q et al. Hybrid external cavity laser with a 160-nm tuning range[C](2020).

    [64] Guo Y Y, Li X H, Jin M H et al. Hybrid integrated external cavity laser with a 172-nm tuning range[J]. APL Photonics, 7, 066101(2022).

    [65] Corato-Zanarella M, Gil-Molina A, Ji X C et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths[J]. Nature Photonics, 17, 157-164(2023).

    [66] Chen C, Wei F, Han X Y et al. Hybrid integrated Si3N4 external cavity laser with high power and narrow linewidth[J]. Optics Express, 31, 26078-26091(2023).

    [67] Poberaj G, Hu H, Sohler W et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 6, 488-503(2012).

    [68] Rao A, Fathpour S. Compact lithium niobate electrooptic modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 3400114(2018).

    [69] Lin J T, Bo F, Cheng Y et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 8, 1910-1936(2020).

    [70] Honardoost A, Safian R, Rao A et al. High-speed modeling of ultracompact electrooptic modulators[J]. Journal of Lightwave Technology, 36, 5893-5902(2018).

    [71] Han Y, Zhang X, Huang F J et al. Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser[J]. Optics Letters, 46, 5413-5416(2021).

    [72] Li T Y, Wu K, Cai M L et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator[J]. APL Photonics, 6, 101301(2021).

    [73] Gao R H, Guan J L, Yao N et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator[J]. Optics Letters, 46, 3131-3134(2021).

    [74] Zhou J X, Huang T, Fang Z W et al. Laser diode-pumped compact hybrid lithium niobate microring laser[J]. Optics Letters, 47, 5599-5601(2022).

    [75] Huang T, Ma Y, Fang Z W et al. Wavelength-tunable narrow-linewidth laser diode based on self-injection locking with a high-Q lithium niobate microring resonator[J]. Nanomaterials, 13, 948(2023).

    [76] Han Y, Zhang X, Ma R et al. Widely tunable O-band lithium niobite/III-V transmitter[J]. Optics Express, 30, 35478-35485(2022).

    [77] Snigirev V, Riedhauser A, Lihachev G et al. Ultrafast tunable lasers using lithium niobate integrated photonics[J]. Nature, 615, 411-417(2023).

    [78] Han M J, Li J Y, Yu H Y et al. Integrated self-injection-locked narrow linewidth laser based on thin-film lithium niobate[J]. Optics Express, 32, 5632-5640(2024).

    [79] De Beeck C O, Mayor F M, Cuyvers S et al. III/V-on-lithium niobate amplifiers and lasers[J]. Optica, 8, 1288-1289(2021).

    [80] Tournié E, Monge Bartolome L, Rio Calvo M et al. Mid-infrared III-V semiconductor lasers epitaxially grown on Si substrates[J]. Light: Science & Applications, 11, 165(2022).

    [81] Hattasan N, Gassenq A, Cerutti L et al. Integrated thin-film GaSb-based Fabry-Perot lasers: towards a fully integrated spectrometer on a SOI waveguide circuit[J]. Proceedings of SPIE, 8631, 863114(2013).

    [82] Spott A, Stanton E J, Torres A et al. Interband cascade laser on silicon[J]. Optica, 5, 996-1005(2018).

    [83] Loghmari Z, Rodriguez J B, Baranov A N et al. InAs-based quantum cascade lasers grown on on-axis (001) silicon substrate[J]. APL Photonics, 5, 041302(2020).

    [84] Cerutti L, Thomas D A D, Rodriguez J B et al. Quantum well interband semiconductor lasers highly tolerant to dislocations[J]. Optica, 8, 1397-1402(2021).

    Luotian Huang, Gengqin Liang, Zongge Li, Peiguang Yan, Jinchuan Guo. Research Progress on Tunable Narrow Linewidth Semiconductor Lasers Integrated with External Cavity[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0300001
    Download Citation