• Journal of Inorganic Materials
  • Vol. 38, Issue 12, 1420 (2023)
Wenshuo KANG1,2, Xiaojie GUO1,2, Kai ZOU1,2, Xiangyong ZHAO3..., Zhiyong ZHOU1 and Ruihong LIANG1,*|Show fewer author(s)
Author Affiliations
  • 11. Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. University of Chinese Academy of Sciences, Beijing 100049, China
  • 33. Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234, China
  • show less
    DOI: 10.15541/jim20230167 Cite this Article
    Wenshuo KANG, Xiaojie GUO, Kai ZOU, Xiangyong ZHAO, Zhiyong ZHOU, Ruihong LIANG. Enhanced Resistivity Induced by the Second Phase with Layered Structure in BiFeO3-BaTiO3 Ceramics [J]. Journal of Inorganic Materials, 2023, 38(12): 1420 Copy Citation Text show less
    References

    [1] Z H YAO, C B XU, H X LIU et al. Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3- BaTiO3 high temperature piezoceramics. J. Mater. Sci-Mater. El., 4975(2014).

    [2] S O LEONTSEV, R E EITEL. Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc., 2957(2009).

    [3] Y WAN, Y LI, Q LI et al. Microstructure, ferroelectric, piezoelectric, and ferromagnetic properties of Sc-modified BiFeO3- BaTiO3 multiferroic ceramics with MnO2 addition. J. Am. Ceram. Soc., 1809(2014).

    [4] M H LEE, D J KIM, J S PARK et al. High-performance lead- free piezoceramics with high curie temperatures. Adv. Mater., 6976(2015).

    [5] FUJII S W ICHIRO. Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3piezoelectric ceramics. J. Appl. Phys.(2017).

    [6] S ZHANG, F YU. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 3153(2011).

    [7] Y SHI, X DONG, K ZHAO et al. Potential high-temperature piezoelectric ceramics with remarkable performances enhanced by the second-order Jahn-Teller effect. ACS Appl. Mater. & Interf., 14385(2021).

    [8] Q KE, X LOU, Y WANG et al. Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3ferroelectric thin films. Phys. Rev. B, 024102(2010).

    [9] H VERWEIJ. Thermodynamics and transport of ionic and electric defects in crystalline oxides. J. Am. Ceram. Soc., 2175(1997).

    [10] T ZHENG, J WU, D XIAO et al. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. in Mater. Sci.(2018).

    [11] T WANG, L JIN, Y TIAN et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett.(2014).

    [12] X D QI, J DHO, R TOMOV et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett., 062903(2005).

    [13] E T WEFRING, M A EINARSRUD, T GRANDE. Electrical conductivity and thermopower of (1-x)BiFeO3-xBi0.5K0.5TiO3(x = 0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition. Phys. Chem. Chem. Phys.: PCCP, 9420(2015).

    [14] L F ZHU, A SONG, B P ZHANG et al. Boosting energy storage performance of BiFeO3-based multilayer capacitors via enhancing ionic bonding and relaxor behavior. J. Mater. Chem. A, 7382(2022).

    [15] F ZENG, G FAN, M HAO et al. Conductive property of BiFeO3- BaTiO3 ferroelectric ceramics with high Curie temperature. J. Alloys and Compd.(2020).

    [16] M VALANT. Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater., 5431(2007).

    [17] I SOSNOWSKA, T P NEUMAIER, E STEICHELE. Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys., 4835(1982).

    [18] R PALAI, R S KATIYAR, H SCHMID. β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B, 014110(2008).

    [19] F P GHEORGHIU, A IANCULESCU, P POSTOLACHE et al. Preparation and properties of (1-x)BiFeO3-xBaTiO3multiferroic ceramics. J.. Alloys and Compd., 862(2010).

    [20] G WANG, J LI, X ZHANG et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energ. Environ. Sci., 582(2019).

    [21] F D MORRISON, D C SINCLAIR, A R WEST. Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy. J. Am. Ceram. Soc., 531(2001).

    [22] B SUNDARAKANNAN, K KAKIMOTO, H OHSATO. Frequency and temperature dependent dielectric and conductivity behavior of KNbO3 ceramics. J. Appl. Phys., 5182(2003).

    [23] J T S IRVINE. Electroceramics characterization by impedance spectroscopy. Adv. Mater., 132(1990).

    [24] H JEBARI, N TAHIRI, M BOUJNAH et al. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO40. Appl. Phys. A, 842(2022).

    [25] T JIANG, Y WANG, Z GUO et al. Bi25FeO40/Bi2O2CO3 piezoelectric catalyst with built-in electric fields that was prepared via photochemical self-etching of Bi25FeO40for 4-chlorophenol degradation. J. Cleaner Prod.(2022).

    [26] K K SEI, M MASARU, Y HIROAKI. Electrical anisotropy and plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal. Mater. Res. Bull., 121(1996).

    [27] O AUCIELLO, A R KRAUSS, J IM et al. Studies of film growth processes and surface structural characterization of ferroelectric memory-compatible SrBi2Ta2O9 layered perovskites via in situ, real-time ion-beam analysis. Appl. Phys. Lett., 2671(1996).

    [28] R WASER. Grain boundaries in dielectric and mixed-conducting ceramics. Acta Mater., 797(2000).

    [29] S H YOON, C A RANDALL, K H HUR. Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)-doped BaTiO3 ceramics. J. Am. Ceram. Soc., 2944(2009).

    [30] G REISS, J VANCEA, H HOFFMANN. Grain-boundary resistance in polycrystalline metals. Phys. Rev. Lett., 2100(1986).

    [31] S M HAILE, D L WEST, J CAMPBELL. The role of microstructure and processing on the proton conducting properties of gadolinium- doped barium cerate. J. Mater. Res., 1576(1998).

    [32] T LUO. Maxwell-Wagner Polarization Characteristics in BaTiO3 PVDF Nanocomposites. High Voltage Engineering(2019).

    [33] C ZHANG, Y CHEN, X LI et al. Effect of LiF addition on sintering behavior and dielectric breakdown mechanism of MgO-based microwave dielectric ceramics. J. Materiomics, 478(2021).

    [34] J C C ABRANTES. Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics. J. Eur. Ceram. Soc., 1603(2000).

    [35] N S BENNETT, D BYRNE, A COWLEY. Enhanced Seebeck coefficient in silicon nanowires containing dislocations. Appl. Phys. Lett., 013903(2015).

    [36] H SINGH, A KUMAR, K L YADAV. Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3ceramics. Mater. Sci. and Engin.: B, 540(2011).

    [37] Q LI, J WEI, T TU et al. Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3-BaTiO3ceramics. J. Am. Ceram. Soc., 5573(2017).

    [38] L WANG, R LIANG, Z ZHOU et al. Electrical conduction mechanisms and effect of atmosphere annealing on the electrical properties of BiFeO3-BaTiO3 ceramics. J. Eur. Ceram. Soc., 4727(2019).

    [39] S MURAKAMI, N T A F AHMED, D WANG et al. Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J. Eur. Ceram. Soc., 4220(2018).

    [40] S MURAKAMI, D WANG, A MOSTAED et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc., 5428(2018).

    Wenshuo KANG, Xiaojie GUO, Kai ZOU, Xiangyong ZHAO, Zhiyong ZHOU, Ruihong LIANG. Enhanced Resistivity Induced by the Second Phase with Layered Structure in BiFeO3-BaTiO3 Ceramics [J]. Journal of Inorganic Materials, 2023, 38(12): 1420
    Download Citation