[1] Z H YAO, C B XU, H X LIU et al. Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3- BaTiO3 high temperature piezoceramics. J. Mater. Sci-Mater. El., 4975(2014).
[2] S O LEONTSEV, R E EITEL. Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc., 2957(2009).
[3] Y WAN, Y LI, Q LI et al. Microstructure, ferroelectric, piezoelectric, and ferromagnetic properties of Sc-modified BiFeO3- BaTiO3 multiferroic ceramics with MnO2 addition. J. Am. Ceram. Soc., 1809(2014).
[4] M H LEE, D J KIM, J S PARK et al. High-performance lead- free piezoceramics with high curie temperatures. Adv. Mater., 6976(2015).
[5] FUJII S W ICHIRO. Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3piezoelectric ceramics. J. Appl. Phys.(2017).
[6] S ZHANG, F YU. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 3153(2011).
[7] Y SHI, X DONG, K ZHAO et al. Potential high-temperature piezoelectric ceramics with remarkable performances enhanced by the second-order Jahn-Teller effect. ACS Appl. Mater. & Interf., 14385(2021).
[8] Q KE, X LOU, Y WANG et al. Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3ferroelectric thin films. Phys. Rev. B, 024102(2010).
[9] H VERWEIJ. Thermodynamics and transport of ionic and electric defects in crystalline oxides. J. Am. Ceram. Soc., 2175(1997).
[10] T ZHENG, J WU, D XIAO et al. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. in Mater. Sci.(2018).
[11] T WANG, L JIN, Y TIAN et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett.(2014).
[12] X D QI, J DHO, R TOMOV et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett., 062903(2005).
[13] E T WEFRING, M A EINARSRUD, T GRANDE. Electrical conductivity and thermopower of (1-x)BiFeO3-xBi0.5K0.5TiO3(x = 0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition. Phys. Chem. Chem. Phys.: PCCP, 9420(2015).
[14] L F ZHU, A SONG, B P ZHANG et al. Boosting energy storage performance of BiFeO3-based multilayer capacitors via enhancing ionic bonding and relaxor behavior. J. Mater. Chem. A, 7382(2022).
[15] F ZENG, G FAN, M HAO et al. Conductive property of BiFeO3- BaTiO3 ferroelectric ceramics with high Curie temperature. J. Alloys and Compd.(2020).
[16] M VALANT. Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater., 5431(2007).
[17] I SOSNOWSKA, T P NEUMAIER, E STEICHELE. Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys., 4835(1982).
[18] R PALAI, R S KATIYAR, H SCHMID. β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B, 014110(2008).
[19] F P GHEORGHIU, A IANCULESCU, P POSTOLACHE et al. Preparation and properties of (1-x)BiFeO3-xBaTiO3multiferroic ceramics. J.. Alloys and Compd., 862(2010).
[20] G WANG, J LI, X ZHANG et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energ. Environ. Sci., 582(2019).
[21] F D MORRISON, D C SINCLAIR, A R WEST. Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy. J. Am. Ceram. Soc., 531(2001).
[22] B SUNDARAKANNAN, K KAKIMOTO, H OHSATO. Frequency and temperature dependent dielectric and conductivity behavior of KNbO3 ceramics. J. Appl. Phys., 5182(2003).
[23] J T S IRVINE. Electroceramics characterization by impedance spectroscopy. Adv. Mater., 132(1990).
[24] H JEBARI, N TAHIRI, M BOUJNAH et al. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO40. Appl. Phys. A, 842(2022).
[25] T JIANG, Y WANG, Z GUO et al. Bi25FeO40/Bi2O2CO3 piezoelectric catalyst with built-in electric fields that was prepared via photochemical self-etching of Bi25FeO40for 4-chlorophenol degradation. J. Cleaner Prod.(2022).
[26] K K SEI, M MASARU, Y HIROAKI. Electrical anisotropy and plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal. Mater. Res. Bull., 121(1996).
[27] O AUCIELLO, A R KRAUSS, J IM et al. Studies of film growth processes and surface structural characterization of ferroelectric memory-compatible SrBi2Ta2O9 layered perovskites via in situ, real-time ion-beam analysis. Appl. Phys. Lett., 2671(1996).
[28] R WASER. Grain boundaries in dielectric and mixed-conducting ceramics. Acta Mater., 797(2000).
[29] S H YOON, C A RANDALL, K H HUR. Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)-doped BaTiO3 ceramics. J. Am. Ceram. Soc., 2944(2009).
[30] G REISS, J VANCEA, H HOFFMANN. Grain-boundary resistance in polycrystalline metals. Phys. Rev. Lett., 2100(1986).
[31] S M HAILE, D L WEST, J CAMPBELL. The role of microstructure and processing on the proton conducting properties of gadolinium- doped barium cerate. J. Mater. Res., 1576(1998).
[32] T LUO. Maxwell-Wagner Polarization Characteristics in BaTiO3 PVDF Nanocomposites. High Voltage Engineering(2019).
[33] C ZHANG, Y CHEN, X LI et al. Effect of LiF addition on sintering behavior and dielectric breakdown mechanism of MgO-based microwave dielectric ceramics. J. Materiomics, 478(2021).
[34] J C C ABRANTES. Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics. J. Eur. Ceram. Soc., 1603(2000).
[35] N S BENNETT, D BYRNE, A COWLEY. Enhanced Seebeck coefficient in silicon nanowires containing dislocations. Appl. Phys. Lett., 013903(2015).
[36] H SINGH, A KUMAR, K L YADAV. Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3ceramics. Mater. Sci. and Engin.: B, 540(2011).
[37] Q LI, J WEI, T TU et al. Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3-BaTiO3ceramics. J. Am. Ceram. Soc., 5573(2017).
[38] L WANG, R LIANG, Z ZHOU et al. Electrical conduction mechanisms and effect of atmosphere annealing on the electrical properties of BiFeO3-BaTiO3 ceramics. J. Eur. Ceram. Soc., 4727(2019).
[39] S MURAKAMI, N T A F AHMED, D WANG et al. Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J. Eur. Ceram. Soc., 4220(2018).
[40] S MURAKAMI, D WANG, A MOSTAED et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc., 5428(2018).