[1] I DINCER, C ACAR. A review on clean energy solutions for better sustainability. Int. J. Energy Res, 585(2015).
[2] N KITTNER, F LILL, D M KAMMEN. Energy storage deployment and innovation for the clean energy transition. Nat. Energy, 17125(2017).
[3] M S WHITTINGHAM. Lithium batteries and cathode materials. Chem. Rev, 4271(2004).
[4] CRESCE A VON WALD, K XU. Aqueous lithium-ion batteries. Carbon Energy, 721(2021).
[5] A MANTHIRAM, Y FU, S-H CHUNG et al. Rechargeable lithium-sulfur batteries. Chem. Rev, 11751(2014).
[6] N ZHANG, X CHEN, M YU et al. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev, 4203(2020).
[7] W DU, E H ANG, Y YANG et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci, 3330(2020).
[8] X JIA, C LIU, Z G NEALE et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev, 7795(2020).
[9] Y LV, Y XIAO, L MA et al. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater, 2106409(2022).
[10] X WANG, Z ZHANG, B XI et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano, 9244(2021).
[11] Q YANG, X LI, Z CHEN et al. Cathode engineering for high energy density aqueous Zn batteries. ACC. Mater. Res, 78(2022).
[12] Z CHEN, C LI, Q YANG et al. Conversion-type nonmetal elemental tellurium anode with high utilization for mild/alkaline zinc batteries. Adv. Mater, 2105426(2021).
[13] Z CHEN, Q YANG, F MO et al. Aqueous zinc-tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv. Mater, 2001469(2020).
[14] J CHEN, Y DING, D YAN et al. Synthesis of MXene and its application for zinc-ion storage. SusMat, 293(2022).
[15] X LI, Z HUANG, C E SHUCK et al. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem, 389(2022).
[16] H E KARAHAN, K GOH, C ZHANG et al. MXene materials for designing advanced separation membranes. Adv. Mater, 1906697(2020).
[17] Y LI, S HUANG, S PENG et al. Toward smart sensing by MXene. Small, 2206126(2023).
[18] W HUANG, L HU, Y TANG et al. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater, 2005223(2020).
[19] Z LING, C E REN, M Q ZHAO et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceed. National Acad. Sci, 16676(2014).
[20] M S JAVED, A MATEEN, S ALI et al. The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small, 2201989(2022).
[21] J LI, C WANG, Z YU et al. MXenes for zinc-based electrochemical energy storage devices. Small, 2304543(2023).
[22] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater, 4248(2011).
[23] M ALHABEB, K MALESKI, B ANASORI et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater, 7633(2017).
[24] X WANG, C GARNERO, G ROCHARD et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J. Mater. Chem. A, 22012(2017).
[25] M GHIDIU, M R LUKATSKAYA, M Q ZHAO et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 78(2014).
[26] A FENG, Y YU, F JIANG et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram. Int, 6322(2017).
[27] J HALIM, M R LUKATSKAYA, K M COOK et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater, 2374(2014).
[28] L WANG, H ZHANG, B WANG et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett, 702(2016).
[29] P URBANKOWSKI, B ANASORI, T MAKARYAN et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 11385(2016).
[30] M LI, J LU, K LUO et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc, 4730(2019).
[31] M LI, Y B LI, K LUO et al. Synthesis of novel MAX phase Ti3ZnC2via A-site-element-substitution approach. J. Inorg. Mater, 60(2019).
[32] Y LI, H SHAO, Z LIN et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater, 894(2020).
[33] H SHI, P ZHANG, Z LIU et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed, 8689(2021).
[34] X LI, M LI, Q YANG et al. In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv. Energy Mater, 2001791(2020).
[35] M NAGUIB, O MASHTALIR, M R LUKATSKAYA et al. One- step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun, 7420(2014).
[36] Y F DONG, Z S WU, S H ZHENG et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano, 4792(2017).
[37] Q XUE, H ZHANG, M ZHU et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater, 1604847(2017).
[38] C J ZHANG, S PINILLA, N MCEVOY et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater, 4848(2017).
[39] O MASHTALIR, K M COOK, V N MOCHALIN et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A, 14334(2014).
[40] B AHMED, D H ANJUM, M N HEDHILI et al. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 7580(2016).
[41] M HAN, X YIN, H WU et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Inter, 21011(2016).
[42] Z LI, L WANG, D SUN et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng.: B, 33(2015).
[43] X LI, X YIN, M HAN et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C, 4068(2017).
[44] J MING, J GUO, C XIA et al. Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng.: R, 58(2019).
[45] B TANG, L SHAN, S LIANG et al. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci, 3288(2019).
[46] G FANG, J ZHOU, A PAN et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett, 24801(2018).
[47] P RUAN, S LIANG, B LU et al. Design strategies for high- energy-density aqueous zinc batteries. Angew. Chemie Int. Ed, e202200598(2022).
[48] N ZHANG, F CHENG, J LIU et al. Rechargeable aqueous zinc- manganese dioxide batteries with high energy and power densities. Nature Comm, 405(2017).
[49] N ZHANG, Y DONG, M JIA et al. Rechargeable aqueous Zn- V2O5battery with high energy density and long cycle life. ACS Energy Lett, 1366(2018).
[50] L ZHANG, L CHEN, X ZHOU et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater, 1400930(2015).
[51] H PAN, B LI, D MEI et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett, 2674(2017).
[52] W LI, K WANG, K JIANG. A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci, 2000761(2020).
[53] Z CHEN, F MO, T WANG et al. Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy & Envir. Sci, 2441(2021).
[54] W LI, K WANG, S CHENG et al. An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater, 1900993(2019).
[55] M S CHAE, S T HONG. Prototype system of rocking-chair Zn-ion battery adopting zinc chevrel phase anode and rhombohedral zinc hexacyanoferrate cathode. Batteries, 3(2019).
[56] Y YANG, J XIAO, J CAI et al. Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: an insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Fun. Mater, 2005092(2020).
[57] H LIU, L JIANG, B CAO et al. Van der Waals interaction-driven self-assembly of V2O5 nanoplates and MXene for high-performing zinc-ion batteries by suppressing vanadium dissolution. ACS Nano, 14539(2022).
[58] C LIU, W XU, C MEI et al. Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem. Eng. J, 126737(2021).
[59] W DU, L MIAO, Z SONG et al. Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer. J. Power Sources, 231512(2022).
[60] Y FENG, Y FENG, Y ZHANG et al. Flexible zinc-ion microbattery based on a VS2/MXene cathode with high cycle life. J. Power Sources, 231944(2022).
[61] X LI, N LI, Z HUANG et al. Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement. Adv. Mater, 2006897(2021).
[62] X LI, N LI, Z HUANG et al. Confining aqueous Zn-Br halide redox chemistry by Ti3C2Tx MXene. ACS Nano, 17186(2021).
[63] Y LIU, Y JIANG, Z HU et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater, 2008033(2021).
[64] D SHA, C LU, W HE et al. Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano, 2711(2022).
[65] M SHI, B WANG, Y SHEN et al. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J, 125627(2020).
[66] J SHI, Y HOU, Z LIU et al. The high-performance MoO3-x/ MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy, 106651(2022).
[67] F LONG, Q ZHANG, J SHI et al. Ultrastable and ultrafast 3D charge-discharge network of robust chemically coupled 1 T- MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries. Chem. Eng. J, 140539(2023).
[68] X LI, X MA, Y HOU et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule, 2993(2021).
[69] J SHIN, J LEE, Y PARK et al. Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci, 2028(2020).
[70] H LI, L MA, C HAN et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy, 550(2019).
[71] W XU, Y WANG. Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett, 90(2019).
[72] L TAN, C WEI, Y ZHANG et al. Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem. Eng. J, 134277(2022).
[73] B ABERLE, D KOWALCZYK, S MASSINI et al. Methylation of unactivated alkenes with engineered methyltransferases to generate non-natural terpenoids. Angew. Chem. Int. Ed, e202301601(2023).
[74] Y TIAN, Y AN, C WEI et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano, 11676(2019).
[75] X LI, Q LI, Y HOU et al. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano, 14631(2021).
[76] J A KUMAR, P PRAKASH, T KRITHIGA et al. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere, 131607(2022).
[77] Z CHEN, X MA, Y HOU et al. Grafted MXenes based electrolytes for 5V-class solid-state batteries. Advanced Functional Materials, 2214539.
[78] C SUN, C WU, X GU et al. Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett, 89(2021).
[79] Z CHEN, X L LI, D H WANG et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy & Environ. Sci, 3492(2021).
[80] L QIN, Q TAO, X LIU et al. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy, 734(2019).
[81] K R G LIM, M SHEKHIREV, B C WYATT et al. Fundamentals of MXene synthesis. Nat. Synth, 601(2022).
[82] X ZHAN, C SI, J ZHOU et al. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz, 235(2020).
[83] C E SHUCK, A SARYCHEVA, M ANAYEE et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater, 1901241(2020).
[84] J C LEI, X ZHANG, Z ZHOU. Recent advances in MXene: preparation, properties, and applications. Front. Phys, 276(2015).
[85] C ZHAN, M NAGUIB, M LUKATSKAYA et al. Understandingthe MXene pseudocapacitance. J. Phys. Chem. Lett, 1223(2018).
[86] X LI, C WANG, Y CAO et al. Functional MXene materials: progress of their applications. Chem.-An Asian J, 2742(2018).
[87] S ULLAH, F SHAHZAD, B QIU et al. MXene-based aptasensors: advances, challenges, and prospects. Prog. Mater. Sci, 100967(2022).
[88] X ZHU, Z CAO, X-L LI et al. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-ion batteries. Energy Storage Mater, 568(2022).
[89] L DING, Y WEI, L LI et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun, 155(2018).
[90] Q JIANG, N KURRA, M ALHABEB et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater, 1703043(2018).
[91] J LI, X YUAN, C LIN et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater, 1602725(2017).
[92] M S JAVED, J CHEN, L CHEN et al. Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. J. Mater. Chem. A, 667(2016).
[93] J L HART, K HANTANASIRISAKUL, A C LANG et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun, 522(2019).
[94] Y LIU, Z DAI, W ZHANG et al. Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano, 9065(2021).
[95] Y AN, Y TIAN, C LIU et al. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano, 15259(2021).
[96] T M GASSER, A V THOENY, A D FORTES et al. Structural characterization of ice XIX as the second polymorph related to ice VI. Nat. Commun, 1128(2021).
[97] L MA, M A SCHROEDER, O BORODIN et al. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy, 743(2020).
[98] A SUMBOJA, J LIU, W G ZHENG et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev, 5919(2018).
[99] A MATEEN, M Z ANSARI, Q ABBAS et al. In situ nitrogen functionalization of 2D-Ti3C2Tx-MXenes for high-performance Zn-ion supercapacitor. Molecules, 7446(2022).
[100] Z LI, D WANG, Z SUN et al. N, P dual-doped MXene nanocomposites for boosting zinc-ion storage capability. Electrochim. Acta, 142440(2023).
[101] W ZHENG, J HALIM, GHAZALY A EL et al. Flexible free- standing MoO3/Ti3C2Tz MXene composite films with high gravimetric and volumetric capacities. Adv. Sci, 2003656(2021).
[102] L SHEN, X ZHOU, X ZHANG et al. Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A, 23513(2018).
[103] X LI, M LI, X LI et al. Low infrared emissivity and strong stealth of Ti-based MXenes. Research, 9892628(2022).
[104] N SUN, Q ZHU, B ANASORI et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater, 1906282(2019).
[105] W LIANG, I ZHITOMIRSKY. MXene-carbon nanotube composite electrodes for high active mass asymmetric supercapacitors. J. Mater. Chem. A, 10335(2021).
[106] K ZOU, P CAI, B WANG et al. Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett, 121(2020).
[107] Z WU, X LIU, T SHANG et al. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater, 2102874(2021).
[108] T SHANG, Z LIN, C QI et al. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater, 1903960(2019).
[109] F BU, M M ZAGHO, Y IBRAHIM et al. Porous MXenes: synthesis, structures, and applications. Nano Today, 100803(2020).
[110] M PENG, L WANG, L LI et al. Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability. Adv. Funct. Mater, 2109524(2022).
[111] K LIANG, R A MATSUMOTO, W ZHAO et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater, 2104007(2021).
[112] P HE, M YAN, G ZHANG et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater, 1601920(2017).
[113] G LIANG, X LI, Y WANG et al. Building durable aqueous K-ion capacitors based on MXene family. Nano Research Energy, e9120002(2022).