• Opto-Electronic Engineering
  • Vol. 50, Issue 10, 230166-1 (2023)
Zhiyong Tao1, Heng Li1,*, Miaosen Dou1, and Sen Lin2
Author Affiliations
  • 1School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125100, China
  • 2School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, Liaoning 110159, China
  • show less
    DOI: 10.12086/oee.2023.230166 Cite this Article
    Zhiyong Tao, Heng Li, Miaosen Dou, Sen Lin. Multi-resolution feature fusion for point cloud classification and segmentation network[J]. Opto-Electronic Engineering, 2023, 50(10): 230166-1 Copy Citation Text show less
    References

    [1] X Y Zhang, M L Chen, X J Liu et al. Classification of terrestrial point cloud considering point density and unknown angular resolution. Laser Technol, 47, 59-66(2023).

    [2] J N Li, Z Wang, T F Xu. Three-dimensional object detection technology based on point cloud data. Acta Opt Sin, 43, 1515001(2023).

    [3] K L Lu, J Xue, C B Tao. Multi target tracking based on spatial mask prediction and point cloud projection. Opto-Electron Eng, 49, 220024(2022).

    [4] Z S Chen, C L Li, W Zuo et al. Study on improved point cloud registration algorithm enhanced by double down-sampling. Automot Eng, 45, 572-578(2023).

    [5] M J Li, Z K Yu, X Liu et al. Progress of point cloud algorithm in medical field. J Image Graphics, 25, 2013-2023(2020).

    [6] J Z Xia, H M Sun, S H Hu et al. 3D laser point cloud clustering method based on image information constraints. Opto-Electron Eng, 50, 220148(2023).

    [7] H Q Bai, Y H Xia, M L Yang et al. Multi-resolution 3D reconstruction of karst caves based on the feature line extraction of 3D laser point cloud. Laser Optoelectron Prog, 57, 202802(2020).

    [8] D Maturana, S Scherer. Voxnet: a 3D convolutional neural network for real-time object recognition, 922-928(2015). https://doi.org/10.1109/IROS.2015.7353481

    [9] G Riegler, Ulusoy A Osman, A Geiger. OctNet: learning deep 3D representations at high resolutions, 6620-6629(2017). https://doi.org/10.1109/CVPR.2017.701

    [10] Z T Xiao, J Gao, D Q Wu et al. A uniform downsampling method for three-dimensional point clouds based on voxel grids. Mach Des Manuf, 180-184(2023).

    [11] H Su, S Maji, E Kalogerakis et al. Multi-view convolutional neural networks for 3D shape recognition, 945-953(2015). https://doi.org/10.1109/ICCV.2015.114

    [12] R Q Charles, H Su, K C Mo et al. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017). https://doi.org/10.1109/CVPR.2017.16

    [13] C R Qi, L Yi, H Su et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space, 5105-5114(2017). https://doi.org/10.5555/3295222.3295263

    [14] M Simonovsky, N Komodakis. Dynamic edge-conditioned filters in convolutional neural networks on graphs, 29-38(2017). https://doi.org/10.1109/CVPR.2017.11

    [15] Y Wang, Y B Sun, Z W Liu et al. Dynamic graph CNN for learning on point clouds. ACM Trans Graphics, 38, 146(2019).

    [16] K G Zhang, M Hao, J Wang et al. Linked dynamic graph CNN: learning on point cloud via linking hierarchical features(2019). https://doi.org/10.48550/arXiv.1904.10014

    [17] B Liu, Y C Fan. A point cloud classification model based on improved dynamic graph convolution. China Sci, 17, 1230-1235, 1266(2022).

    [18] Q Sun, H Y Liu, J He et al. DAGC: employing dual attention and graph convolution for point cloud based place recognition, 224-232(2020). https://doi.org/10.1145/3372278.3390693

    [19] M H Guo, J X Cai, Z N Liu et al. PCT: point cloud transformer. Comput Vis Med, 7, 187-199(2021).

    [20] H Liu, S H Tian. Deep 3D point cloud classification and segmentation network based on GateNet. Vis Comput(2023). https://doi.org/10.1007/s00371-023-02826-w

    [21] Z R Wu, S R Song, A Khosla et al. 3D shapeNets: a deep representation for volumetric shapes, 1912-1920(2015). https://doi.org/10.1109/CVPR.2015.7298801

    [22] M A Uy, Q H Pham, B S Hua et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data, 1588-1597(2019). https://doi.org/10.1109/ICCV.2019.00167

    [23] L Yi, V G Kim, D Ceylan et al. A scalable active framework for region annotation in 3D shape collections. ACM Trans Graphics, 35, 210(2016).

    [24] Z X Wang, M W Ren. DST-Pointnet++: A novel point cloud classification network based on pointnet++. Comput Digit Eng, 50, 2497-2501(2022).

    [25] B J Wang, L P Nong, W H Zhang et al. 3D point cloud classification and segmentation network based on Spider convolution. J Comput Appl, 40, 1607-1612(2020).

    [26] Z H Lin, S Y Huang, Y C F Wang. Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis, 1797-1806(2020). https://doi.org/10.1109/CVPR42600.2020.00187

    [27] L F Chen, Q Zhang. DDGCN: graph convolution network based on direction and distance for point cloud learning. Vis Comput, 39, 863-873(2023).

    [28] S Qiu, S Anwar, N Barnes. Dense-resolution network for point cloud classification and segmentation, 3812-3821(2021). https://doi.org/10.1109/WACV48630.2021.00386

    [29] J Wan, Z Xie, Y Y Xu et al. DGANet: a dilated graph attention-based network for local feature extraction on 3D point clouds. Remote Sens, 13, 3484(2021).

    [30] R M Zhang, T Cheng, L Yin et al. Attention fusion and multi-scale point cloud classification network. J Huaibei Normal Univ (Natl Sci), 44, 70-75(2023).

    [31] Y E Guo, M W Ren. Improved point cloud classification network based on PointConv. Comput Digit Eng, 50, 2737-2740, 2764(2022).

    [32] S Qiu, S Anwar, N Barnes. Geometric back-projection network for point cloud classification. IEEE Trans Multimedia, 24, 1943-1955(2021).

    [33] S L Cheng, X W Chen, X W He et al. PRA-Net: point relation-aware network for 3D point cloud analysis. IEEE Trans Image Process, 30, 4436-4448(2021).

    [34] W Song, W Y Cai, S Q He et al. Dynamic graph convolution with spatial attention for point cloud classification and segmentation. J Image Graphics, 26, 2691-2702(2021).

    [35] H R Zhou, Y D Feng, M S Fang et al. Adaptive graph convolution for point cloud analysis, 4945-4954(2021). https://doi.org/10.1109/ICCV48922.2021.00492

    Zhiyong Tao, Heng Li, Miaosen Dou, Sen Lin. Multi-resolution feature fusion for point cloud classification and segmentation network[J]. Opto-Electronic Engineering, 2023, 50(10): 230166-1
    Download Citation