• Nano-Micro Letters
  • Vol. 16, Issue 1, 261 (2024)
Gi Baek Nam1,†, Jung-El Ryu1,2,†, Tae Hoon Eom1,†, Seung Ju Kim1,3,†..., Jun Min Suh1,2, Seungmin Lee1, Sungkyun Choi1, Cheon Woo Moon4, Seon Ju Park1, Soo Min Lee1, Byungsoo Kim1, Sung Hyuk Park1, Jin Wook Yang1, Sangjin Min5, Sohyeon Park1, Sung Hwan Cho1, Hyuk Jin Kim1, Sang Eon Jun1, Tae Hyung Lee1, Yeong Jae Kim1, Jae Young Kim1, Young Joon Hong6, Jong-In Shim5, Hyung-Gi Byun7, Yongjo Park8, Inkyu Park9,*, Sang-Wan Ryu10,** and Ho Won Jang1,8,***|Show fewer author(s)
Author Affiliations
  • 1Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
  • 2Research Laboratory of Electronics, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • 3Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
  • 4Department of Display Materials Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
  • 5Department of Photonics and Nanoelectronics, BK21 FOUR ERICA-ACE Center, Hanyang University ERICA, Ansan 15588, Republic of Korea
  • 6Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
  • 7Department of Electronics, Information and Communication Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
  • 8Advance Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
  • 9Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
  • 10Department of Physics, Chonnam National University, Gwangju 500-757, Republic of Korea
  • show less
    DOI: 10.1007/s40820-024-01486-2 Cite this Article
    Gi Baek Nam, Jung-El Ryu, Tae Hoon Eom, Seung Ju Kim, Jun Min Suh, Seungmin Lee, Sungkyun Choi, Cheon Woo Moon, Seon Ju Park, Soo Min Lee, Byungsoo Kim, Sung Hyuk Park, Jin Wook Yang, Sangjin Min, Sohyeon Park, Sung Hwan Cho, Hyuk Jin Kim, Sang Eon Jun, Tae Hyung Lee, Yeong Jae Kim, Jae Young Kim, Young Joon Hong, Jong-In Shim, Hyung-Gi Byun, Yongjo Park, Inkyu Park, Sang-Wan Ryu, Ho Won Jang. Real-Time Tunable Gas Sensing Platform Based on SnO2 Nanoparticles Activated by Blue Micro-Light-Emitting Diodes[J]. Nano-Micro Letters, 2024, 16(1): 261 Copy Citation Text show less
    References

    [1] S.Y. Park, Y. Kim, T. Kim, T.H. Eom, S.Y. Kim et al., Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 1, 289–316 (2019).

    [2] S.H. Cho, J.M. Suh, T.H. Eom, T. Kim, H.W. Jang, Colorimetric sensors for toxic and hazardous gas detection: a review. Electron. Mater. Lett. 17, 1–17 (2021).

    [3] H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B Chem. 192, 607–627 (2014).

    [4] R. Kumar, X. Liu, J. Zhang, M. Kuma, r Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12, 164 (2020).

    [5] S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 105369 (2021).

    [6] N. Luo, C. Wang, D. Zhang, M. Guo, X. Wang et al., Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sens. Actuat. B Chem. 354, 130982 (2022).

    [7] J.M. Suh, T.H. Eom, S.H. Cho, T. Kim, H.W. Jang, Light-activated gas sensing: a perspective of integration with micro-LEDs and plasmonic nanoparticles. Mater. Adv. 2, 827–844 (2021).

    [8] J. Wang, H. Shen, Y. Xia, S. Komarneni, Light-activated room-temperature gas sensors based on metal oxide nanostructures: a review on recent advances. Ceram. Int. 47, 7353–7368 (2021).

    [9] T.H. Eom, S.H. Cho, J.M. Suh, T. Kim, T.H. Lee et al., Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination. J. Mater. Chem. A 9, 11168–11178 (2021).

    [10] H.-Y. Li, J.-W. Yoon, C.-S. Lee, K. Lim, J.-W. Yoon et al., Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens. Actuat. B Chem. 255, 2963–2970 (2018).

    [11] G. Li, Z. Sun, D. Zhang, Q. Xu, L. Meng et al., Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination. ACS Sens. 4, 1577–1585 (2019).

    [12] H.K. Biesalski, U.C. Obermueller-Jevic, UV light, beta-carotene and human skin—beneficial and potentially harmful effects. Arch. Biochem. Biophys. 389, 1–6 (2001).

    [13] H. Van Loveren, W. Goettsch, W. Slob, J. Garssen, Risk assessment for the harmful effects of immunotoxic agents on the immunological resistance to infectious diseases: ultraviolet light as an example. Toxicology 119, 59–64 (1997).

    [14] T.H. Eom, S.H. Cho, J.M. Suh, T. Kim, J.W. Yang et al., Visible light driven ultrasensitive and selective NO2 detection in tin oxide nanoparticles with sulfur doping assisted by l-cysteine. Small 18, e2106613 (2022).

    [15] X. Li, W. Ge, P. Wang, K. Han, H. Zhao et al., Near-infrared enhanced SnO2/SnSe2 heterostructures for room-temperature NO2 detection: Experiments and DFT calculations. Sens. Actuat. B Chem. 397, 134643 (2023).

    [16] T. Kim, T.H. Lee, S.Y. Park, T.H. Eom, I. Cho et al., Drastic gas sensing selectivity in 2-dimensional MoS2 nanoflakes by noble metal decoration. ACS Nano 17, 4404–4413 (2023).

    [17] S. Park, Y. Lim, D. Oh, J. Ahn, C. Park et al., Steering selectivity in the detection of exhaled biomarkers over oxide nanofibers dispersed with noble metals. J. Mater. Chem. A 11, 3535–3545 (2023).

    [18] H.W. Jang, S.Y. Kim, J.-L. Lee, Mechanism for ohmic contact formation of oxidized Ni/Au on p-type GaN. J. Appl. Phys. 94, 1748–1752 (2003).

    [19] C.-Y. Hsu, W.-H. Lan, Y.S. Wu, Effect of thermal annealing of Ni/Au ohmic contact on the leakage current of GaN based light emitting diodes. Appl. Phys. Lett. 83, 2447–2449 (2003).

    [20] Y.C. Lin, S.J. Chang, Y.K. Su, T.Y. Tsai, C.S. Chang et al., InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts. Solid State Electron. 47, 849–853 (2003).

    [21] S.H. Mohamed, SnO2 dendrites–nanowires for optoelectronic and gas sensing applications. J. Alloys Compd. 510, 119–124 (2012).

    [22] E.D. Palik, Handbook of optical constants of solids (Academic press; 1998).

    [23] E. Tea, J. Huang, C. Hin, First principles study of band line up at defective metal-oxide interface: oxygen point defects at Al/SiO2 interface. J. Phys. D Appl. Phys. 49, 095304 (2016).

    [24] H. Matsui, K. Santhi, S. Sugiyama, M. Yoshihara, S. Karuppuchamy, Visible light-induced photocatalytic activity of SiO2/carbon cluster composite materials. Ceram. Int. 40, 2169–2172 (2014).

    [25] J.E. Ryu, S. Park, Y. Park, S.W. Ryu, K. Hwang et al., Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays. Adv. Mater. 35, e2204947 (2023).

    [26] W. Tian, J. Li, Size-dependent optical-electrical characteristics of blue GaN/InGaN micro-light-emitting diodes. Appl. Opt. 59, 9225–9232 (2020).

    [27] R.-H. Horng, C.-X. Ye, P.-W. Chen, D. Iida, K. Ohkawa et al., Study on the effect of size on InGaN red micro-LEDs. Sci. Rep. 12, 1324 (2022).

    [28] T. Mukai, M. Yamada, S. Nakamura, Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes. Jpn. J. Appl. Phys. 37, L1358 (1998).

    [29] S.J. Chang, W.C. Lai, Y.K. Su, J.F. Chen, C.H. Liu et al., InGaN-GaN multiquantum-well blue and green light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 8, 278–283 (2002).

    [30] F. Trani, M. Causà, D. Ninno, G. Cantele, V. Barone, Density functional study of oxygen vacancies at the SnO2 surface and subsurface sites. Phys. Rev. B 77, 245410 (2008).

    [31] N. Zamand, A.N. Pour, M.R. Housaindokht, M. Izadyar, Surface decomposition of dimethyl methylphosphonate on SnO2 nanoparticles: role of nanoparticle size. Prog. React. Kinet. Mech. 42, 99–110 (2017).

    [32] C. Kílíç, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 095501 (2002).

    [33] A. Das Mahapatra, D. Basak, Investigation on sub-band gap defects aided UV to NIR broad-band low-intensity photodetection by SnO2 thin film. Sens. Actuat. A Phys. 312, 112168 (2020).

    [34] J. Wang, Z. Chen, Y. Liu, C.-H. Shek, C.M.L. Wu et al., Heterojunctions and optical properties of ZnO/SnO2 nanocomposites adorned with quantum dots. Sol. Energy Mater. Sol. Cells 128, 254–259 (2014).

    [35] C. Hu, L. Chen, Y. Hu, A. Chen, L. Chen et al., Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 33, e2103558 (2021).

    [36] J. Wang, H. Li, S. Meng, X. Ye, X. Fu et al., Controlled synthesis of Sn-based oxides via a hydrothermal method and their visible light photocatalytic performances. RSC Adv. 7, 27024–27032 (2017).

    [37] W. Dong, J. Xu, C. Wang, Y. Lu, X. Liu et al., A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible. Adv. Mater. 29, 1700136 (2017).

    [38] M. Fondell, M. Gorgoi, M. Boman, A. Lindblad, An HAXPES study of Sn, SnS, SnO and SnO2. J. Electron Spectrosc. Relat. Phenom. 195, 195–199 (2014).

    [39] M. Karmaoui, A.B. Jorge, P.F. McMillan, A.E. Aliev, R.C. Pullar et al., One-step synthesis, structure, and band gap properties of SnO2 nanoparticles made by a low temperature nonaqueous sol-gel technique. ACS Omega 3, 13227–13238 (2018).

    [40] Y. Porte, R. Maller, H. Faber, H.N. AlShareef, T.D. Anthopoulos et al., Exploring and controlling intrinsic defect formation in SnO2 thin films. J. Mater. Chem. C 4, 758–765 (2016).

    [41] S. Deepa, K. Prasanna Kumari, B. Thomas, Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films. Ceram. Int. 43, 17128–17141 (2017).

    [42] M. Egashira, M. Nakashima, S. Kawasumi, T. Selyama, Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces. J. Phys. Chem. 85, 4125–4130 (1981).

    [43] E. Wongrat, T. Nuengnit, R. Panyathip, N. Chanlek, N. Hongsith et al., Highly selective room temperature ammonia sensors based on ZnO nanostructures decorated with graphene quantum dots (GQDs). Sens. Actuat. B Chem. 326, 128983 (2021).

    [44] P. Srinivasan, D. Prakalya, B.G. Jeyaprakash, UV-activated ZnO/CdO n-n isotype heterostructure as breath sensor. J. Alloys Compd. 819, 152985 (2020).

    [45] Q. Geng, X. Lin, R. Si, X. Chen, W. Dai et al., The correlation between the ethylene response and its oxidation over TiO2 under UV irradiation. Sens. Actuat. B Chem. 174, 449–457 (2012).

    [46] H. Dong, L.-X. Zhang, H. Xu, Y.-Y. Yin, Y.-F. Liu et al., A highly efficient humidity sensor based on lead (II) coordination polymer via in situ decarboxylation and hydrolysis synthesis. Rare Met. 41, 1652–1660 (2022).

    [47] Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005).

    [48] J.M. Suh, T.H. Lee, K. Hong, Y.G. Song, S.H. Cho et al., Extremely sensitive and selective NO2 detection at relative humidity 90% in 2-dimensional tin sulfides/SnO2 nanorod heterostructure. Sens. Actuat. B Chem. 369, 132319 (2022).

    [49] I. Cho, Y.C. Sim, K. Lee, M. Cho, J. Park et al., Nanowatt-level photoactivated gas sensor based on fully-integrated visible MicroLED and plasmonic nanomaterials. Small 19, e2207165 (2023).

    [50] I. Cho, Y.C. Sim, M. Cho, Y.H. Cho, I. Park, Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption. ACS Sens. 5, 563–570 (2020).

    [51] D. Cho, J.M. Suh, S.H. Nam, S.Y. Park, M. Park et al., Optically activated 3D thin-shell TiO2 for super-sensitive chemoresistive responses: toward visible light activation. Adv. Sci. 8, 2001883 (2020).

    [52] E. Espid, F. Taghipour, Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens. Actuat. B Chem. 241, 828–839 (2017).

    [53] E. Espid, A.S. Noce, F. Taghipour, The effect of radiation parameters on the performance of photo-activated gas sensors. J. Photochem. Photobiol. A Chem. 374, 95–105 (2019).

    [54] Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai et al., Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sens. Actuat. B Chem. 259, 269–281 (2018).

    [55] M. Sokolsky-Papkov, A. Kabanov, Synthesis of well-defined gold nanoparticles using pluronic: the role of radicals and surfactants in nanoparticles formation. Polymers 11, 1553 (2019).

    [56] P. Prasanthan, N. Kishore, Self-assemblies of pluronic micelles in partitioning of anticancer drugs and effectiveness of this system towards target protein. RSC Adv. 11, 22057–22069 (2021).

    [57] Z. Wu, C. Guo, S. Liang, H. Zhang, L. Wang et al., A pluronic F127 coating strategy to produce stable up-conversion NaYF4: Yb, Er(Tm) nanoparticles in culture media for bioimaging. J. Mater. Chem. 22, 18596–18602 (2012).

    [58] S. Chen, C. Guo, G.-H. Hu, J. Wang, J.-H. Ma et al., Effect of hydrophobicity inside PEO-PPO-PEO block copolymer micelles on the stabilization of gold nanoparticles: experiments. Langmuir 22, 9704–9711 (2006).

    [59] E. Fudo, A. Tanaka, H. Kominami, AuOx, Surface oxide layer as a hole-transferring cocatalyst for water oxidation over au nanoparticle-decorated TiO2 photocatalysts. ACS Appl. Nano Mater. 5, 8982–8990 (2022).

    [60] N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001).

    [61] L.L. Fields, J.P. Zheng, Y. Cheng, P. Xiong, Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt. Appl. Phys. Lett. 88, 263102 (2006).

    [62] A.A. Abokifa, K. Haddad, J. Fortner, C.S. Lo, P. Biswas, Sensing mechanism of ethanol and acetone at room temperature by SnO2 nano-columns synthesized by aerosol routes: theoretical calculations compared to experimental results. J. Mater. Chem. A 6, 2053–2066 (2018).

    [63] L. Chen, H. Shi, C. Ye, X. Xia, Y. Li et al., Enhanced ethanol-sensing characteristics of Au decorated In-doped SnO2 porous nanotubes at low working temperature. Sens. Actuat. B Chem. 375, 132864 (2023).

    [64] L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15, 89 (2023).

    [65] A. Mirzaei, H.R. Yousefi, F. Falsafi, M. Bonyani, J.-H. Lee et al., An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. Int. J. Hydrog. Energy 44, 20552–20571 (2019).

    [66] C.-C. Zhao, J.-B. Eun, Isolation and identification of hyper-ammonia-producing bacteria from commercial fermented skates (Raja kenojei). J. Food Sci. Technol. 55, 5082–5090 (2018).

    [67] T. Mogi, D. Kim, H. Shiina, S. Horiguchi, Self-ignition and explosion during discharge of high-pressure hydrogen. J. Loss Prev. Process Ind. 21, 199–204 (2008).

    Gi Baek Nam, Jung-El Ryu, Tae Hoon Eom, Seung Ju Kim, Jun Min Suh, Seungmin Lee, Sungkyun Choi, Cheon Woo Moon, Seon Ju Park, Soo Min Lee, Byungsoo Kim, Sung Hyuk Park, Jin Wook Yang, Sangjin Min, Sohyeon Park, Sung Hwan Cho, Hyuk Jin Kim, Sang Eon Jun, Tae Hyung Lee, Yeong Jae Kim, Jae Young Kim, Young Joon Hong, Jong-In Shim, Hyung-Gi Byun, Yongjo Park, Inkyu Park, Sang-Wan Ryu, Ho Won Jang. Real-Time Tunable Gas Sensing Platform Based on SnO2 Nanoparticles Activated by Blue Micro-Light-Emitting Diodes[J]. Nano-Micro Letters, 2024, 16(1): 261
    Download Citation