• Nano-Micro Letters
  • Vol. 16, Issue 1, 175 (2024)
Fan He1, Yingnan Liu1, Xiaoxuan Yang1, Yaqi Chen1..., Cheng-Chieh Yang5, Chung-Li Dong5, Qinggang He1, Bin Yang1, Zhongjian Li1, Yongbo Kuang3, Lecheng Lei1, Liming Dai6 and Yang Hou1,2,4,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
  • 2Institute of Zhejiang University - Quzhou, Quzhou, 324000, People’s Republic of China
  • 3Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
  • 4School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
  • 5Department of Physics, Tamkang University, New Taipei, 25137 Taiwan, People’s Republic of China
  • 6Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2051, Australia
  • show less
    DOI: 10.1007/s40820-024-01382-9 Cite this Article
    Fan He, Yingnan Liu, Xiaoxuan Yang, Yaqi Chen, Cheng-Chieh Yang, Chung-Li Dong, Qinggang He, Bin Yang, Zhongjian Li, Yongbo Kuang, Lecheng Lei, Liming Dai, Yang Hou. Accelerating Oxygen Electrocatalysis Kinetics on Metal–Organic Frameworks via Bond Length Optimization[J]. Nano-Micro Letters, 2024, 16(1): 175 Copy Citation Text show less
    References

    [1] M. Crespo-Quesada, L.M. Pazos-Outón, J. Warnan, M.F. Kuehnel, R.H. Friend et al., Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016).

    [2] X. Yu, V.L. Zholobenko, S. Moldovan, D. Hu, D. Wu et al., Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 5, 511–519 (2020).

    [3] J.Z. Zhang, E. Reisner, Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020).

    [4] T. Bouwens, T.M.A. Bakker, K. Zhu, J. Hasenack, M. Dieperink et al., Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices. Nat. Chem. 15, 213–221 (2023).

    [5] V. Andrei, G.M. Ucoski, C. Pornrungroj, C. Uswachoke, Q. Wang et al., Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature 608, 518–522 (2022).

    [6] X. You, D. Zhang, X.-G. Zhang, X. Li, J.-H. Tian et al., Exploring the cation regulation mechanism for interfacial water involved in the hydrogen evolution reaction by in situ Raman spectroscopy. Nano-Micro Lett. 16, 53 (2023).

    [7] S. Lyu, C. Guo, J. Wang, Z. Li, B. Yang et al., Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat. Commun. 13, 6171 (2022).

    [8] K. Wang, Y. Wang, B. Yang, Z. Li, X. Qin et al., Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy Environ. Sci. 15, 2356–2365 (2022).

    [9] D.Y. Chung, P.P. Lopes, P. Farinazzo Bergamo Dias Martins, H. He, T. Kawaguchi et al., Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222–230 (2020).

    [10] Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019).

    [11] Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang et al., Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 3, 812–821 (2017).

    [12] R.R. Rao, I.E.L. Stephens, J.R. Durrant, Understanding what controls the rate of electrochemical oxygen evolution. Joule 5, 16–18 (2021).

    [13] H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414–1448 (2020).

    [14] X. Zhou, B. Fu, L. Li, Z. Tian, X. Xu et al., Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction. Nat. Commun. 13, 5770 (2022).

    [15] J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai et al., Internal polarization field induced hydroxyl spillover effect for industrial water splitting electrolyzers. Nano-Micro. Lett. 16, 39 (2023).

    [16] X. Ling, F. Du, Y. Zhang, Y. Shen, W. Gao et al., Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 9, 13271–13278 (2021).

    [17] V. Andrei, R.A. Jagt, M. Rahaman, L. Lari, V.K. Lazarov et al., Long-term solar water and CO2 splitting with photoelectrochemical BiOI–BiVO4 tandems. Nat. Mater. 21, 864–868 (2022).

    [18] H. Wu, L. Zhang, A. Du, R. Irani, R. van de Krol et al., Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping. Nat. Commun. 13, 6231 (2022).

    [19] L.-W. Wu, C. Liu, Y. Han, Y. Yu, Z. Liu et al., In situ spectroscopic identification of the electron-transfer intermediates of photoelectrochemical proton-coupled electron transfer of water oxidation on Au. J. Am. Chem. Soc. 145, 2035–2039 (2023).

    [20] X. Zhang, P. Zhai, Y. Zhang, Y. Wu, C. Wang et al., Engineering single-atomic Ni-N4-O sites on semiconductor photoanodes for high-performance photoelectrochemical water splitting. J. Am. Chem. Soc. 143, 20657–20669 (2021).

    [21] Y. Qi, J. Zhang, Y. Kong, Y. Zhao, S. Chen et al., Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 13, 484 (2022).

    [22] D. Lee, W. Wang, C. Zhou, X. Tong, M. Liu et al., The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4. Nat. Energy 6, 287–294 (2021).

    [23] T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    [24] Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023).

    [25] S. Zhao, C. Tan, C.-T. He, P. An, F. Xie et al., Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881–890 (2020).

    [26] J. Yang, Y. Shen, Y. Sun, J. Xian, Y. Long et al., Ir nanoparticles anchored on metal-organic frameworks for efficient overall water splitting under pH-universal conditions. Angew. Chem. Int. Ed. 62, e202302220 (2023).

    [27] H. Hu, Z. Wang, L. Cao, L. Zeng, C. Zhang et al., Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).

    [28] J. Xian, S. Li, H. Su, P. Liao, S. Wang et al., Electrosynthesis of α-amino acids from NO and other NOx species over CoFe alloy-decorated self-standing carbon fiber membranes. Angew. Chem. Int. Ed. 62, e202306726 (2023).

    [29] Z. Jiang, X. Xu, Y. Ma, H.S. Cho, D. Ding et al., Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549–554 (2020).

    [30] Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li et al., Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 10, 5048 (2019).

    [31] W. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019).

    [32] Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12, 1369 (2021).

    [33] K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni et al., Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 13, 2075 (2022).

    [34] F. Cheng, X. Peng, L. Hu, B. Yang, Z. Li et al., Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production. Nat. Commun. 13, 6486 (2022).

    [35] F. He, Q. Zheng, X. Yang, L. Wang, Z. Zhao et al., Spin-state modulation on metal-organic frameworks for electrocatalytic oxygen evolution. Adv. Mater. 35, e2304022 (2023).

    [36] L. Zhang, R. Long, Y. Zhang, D. Duan, Y. Xiong et al., Direct observation of dynamic bond evolution in single-atom Pt/C3 N4 catalysts. Angew. Chem. Int. Ed. Engl. 59, 6224–6229 (2020).

    [37] W.H. Lee, M.H. Han, Y.J. Ko, B.K. Min, K.H. Chae et al., Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 13, 605 (2022).

    [38] H. Tao, Y. Xu, X. Huang, J. Chen, L. Pei et al., A general method to probe oxygen evolution intermediates at operating conditions. Joule 3, 1498–1509 (2019).

    [39] S. Chibani, C. Michel, F. Delbecq, C. Pinel, M. Besson, On the key role of hydroxyl groups in platinum-catalysed alcohol oxidation in aqueous medium. Catal. Sci. Technol. 3, 339–350 (2013).

    [40] X. Kang, K. Lyu, L. Li, J. Li, L. Kimberley et al., Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nat. Commun. 10, 4466 (2019).

    [41] F. He, Y. Zhao, X. Yang, S. Zheng, B. Yang et al., Metal-organic frameworks with assembled bifunctional microreactor for charge modulation and strain generation toward enhanced oxygen electrocatalysis. ACS Nano 16, 9523–9534 (2022).

    [42] J.-Y. Zhang, Y. Yan, B. Mei, R. Qi, T. He et al., Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 14, 365–373 (2021).

    [43] B.E. Van Kuiken, M. Khalil, Simulating picosecond iron K-edge X-ray absorption spectra by ab initio methods to study photoinduced changes in the electronic structure of Fe(II) spin crossover complexes. J. Phys. Chem. A 115, 10749–10761 (2011).

    [44] G. Zhou, P. Wang, H. Li, B. Hu, Y. Sun et al., Spin-sate reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat. Commun. 12, 4827 (2021).

    [45] J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Fan He, Yingnan Liu, Xiaoxuan Yang, Yaqi Chen, Cheng-Chieh Yang, Chung-Li Dong, Qinggang He, Bin Yang, Zhongjian Li, Yongbo Kuang, Lecheng Lei, Liming Dai, Yang Hou. Accelerating Oxygen Electrocatalysis Kinetics on Metal–Organic Frameworks via Bond Length Optimization[J]. Nano-Micro Letters, 2024, 16(1): 175
    Download Citation