• Chinese Optics Letters
  • Vol. 23, Issue 2, 020601 (2025)
Shaoshao Yu1,2, Wenyu Zhao1,2, Xin Wang1,2, Xinghua Li1,2, and Shougang Zhang1,2,*
Author Affiliations
  • 1Key Laboratory of Time Reference and Applications, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202523.020601 Cite this Article Set citation alerts
    Shaoshao Yu, Wenyu Zhao, Xin Wang, Xinghua Li, Shougang Zhang, "Novel compensation technique for mitigating dispersion in fiber-optic microwave frequency transfer systems," Chin. Opt. Lett. 23, 020601 (2025) Copy Citation Text show less
    References

    [1] J. Guéna, M. Abgrall, D. Rovera et al. Progress in atomic fountains at LNE-SYRTE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, 391(2012).

    [2] B. Lipphardt, V. Gerginov, S. Weyers. Optical stabilization of a microwave oscillator for fountain clock interrogation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, 761(2017).

    [3] A. Bauch, J. Achkar, S. Bize et al. Comparison between frequency standards in Europe and the USA at the 10-15 uncertainty level. Metrologia, 43, 109(2006).

    [4] K. Grainge, B. Alachkar, S. Amy et al. Square Kilometer Array: The radio telescope of the XXI century. Astron. Rep., 61, 288(2017).

    [5] R. J. Selina, M. McKinnon, A. J. Beasley et al. The next-generation very large array: A technical overview. Proc. SPIE, 10700, 107001O(2018).

    [6] A. Matveev, C. G. Parthey, K. Predehl et al. Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link. Phys. Rev. Lett., 110, 230801(2013).

    [7] C. Clivati, R. Aiello, G. Bianco et al. Common-clock very long baseline interferometry using a coherent optical fiber link. Optica, 7, 1031(2020).

    [8] G. Marra, H. S. Margolis, S. N. Lea et al. High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber. Opt. Lett., 35, 1025(2010).

    [9] L. S. Ma, P. Jungner, J. Ye et al. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett., 19, 1777(1994).

    [10] O. Lopez, A. Amy-Klein, C. Daussy et al. 86-km optical link with a resolution of 2 × 10-18 for RF frequency transfer. Eur. Phys. J. D, 48, 35(2008).

    [11] B. Wang, C. Gao, W. L. Chen et al. Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level. Sci. Rep., 2, 556(2012).

    [12] H. F. Jiang. Development of ultra-stable laser sources and longdistance optical link via telecommunication networks(2010).

    [13] P. Krehlik, Ł Śliwczyński, Ł Buczek. Ultrastable long-distance fibre-optic time transfer: Active compensation over a wide range of delays. Metrologia, 52, 82(2015).

    [14] Q. Li, L. Hu, J. Chen et al. Studying the double Rayleigh backscattering noise effect on fiber-optic radio frequency transfer. IEEE Photonics J., 13, 7100210(2021).

    [15] F. Khaleghi, J. Li, M. Kavehrad et al. Increasing repeater span in high-speed bidirectional WDM transmission systems using a new bidirectional EDFA configuration. IEEE Photon. Technol. Lett., 8, 1252(1996).

    [16] S. Yu, W. Zhao, W. Xue et al. Microwave frequency dissemination over a 250 km fiber link with stability at the 10−18 level. Photonics, 10, 872(2023).

    [17] W. X. Xue, W. Y. Zhao, H. L. Quan et al. Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation. Chin. Phys. B, 29, 064209(2020).

    [18] W. Xue, H. Quan, W. Zhao et al. Microwave frequency transfer over a 500-km cascaded fiber link using tracking filter. Opt. Laser Technol., 163, 109327(2023).

    [19] H. Gao, T. Jiang, J. Li et al. Comparison of relay methods for long-distance radio frequency transmission. J. Lightwave Technol., 42, 121(2023).

    [20] C. Liu, J. Shang, Z. Zhao et al. Ultrastable long-haul fiber-optic radio frequency transfer based on dual-PLL. IEEE Photonics J., 13, 7100108(2020).

    [21] O. Lopez, A. Amy-Klein, M. Lours et al. High-resolution microwave frequency dissemination on an 86-km urban optical link. Appl. Phys. B, 98, 723(2010).

    [22] C. Gao, B. Wang, W. L. Chen et al. Fiber-based multiple-access ultrastable frequency dissemination. Opt. Lett., 37, 4690(2012).

    [23] Y. Chen, H. Dai, H. Si et al. Long-haul high precision frequency dissemination based on dispersion correction. IEEE Trans. Instrum. Measure, 71, 5503207(2022).

    [24] H. Quan, W. Xue, W. Zhao et al. Microwave frequency dissemination over a 212 km cascaded urban fiber link with stability at the 10-18 level. Photonics, 9, 399(2022).

    [25] W. Xue, W. Zhao, H. Quan et al. Cascaded microwave frequency transfer over 300-km fiber link with instability at the 10-18 level. Remote Sens., 13, 2182(2021).

    [26] B. Wang, X. Zhu, C. Gao et al. Square kilometre array telescope—precision reference frequency synchronisation via 1f-2f dissemination. Sci. Rep., 5, 13851(2015).

    [27] D. S. Asha. Design and analysis of 160 GHz millimeter wave RoF system with dispersion tolerance. J. Opt., 52, 1461(2023).

    [28] S. Kumar, S. Sharma, S. Dahiya. WDM-based 160 Gbps radio over fiber system with the application of dispersion compensation fiber and fiber Bragg grating. Front. Phys., 9, 691387(2021).

    Shaoshao Yu, Wenyu Zhao, Xin Wang, Xinghua Li, Shougang Zhang, "Novel compensation technique for mitigating dispersion in fiber-optic microwave frequency transfer systems," Chin. Opt. Lett. 23, 020601 (2025)
    Download Citation