• Advanced Photonics Nexus
  • Vol. 3, Issue 5, 056008 (2024)
Wenjing Zhao1,†, Zefang Gao1, Zhiheng Du1, Aiping Zhai1, and Dong Wang1,2,*
Author Affiliations
  • 1Taiyuan University of Technology, College of Physics and Optoelectronics, Yingze, China
  • 2Taiyuan University of Technology, Ministry of Education, Key Laboratory of Advanced Transducers and Intelligent Control System, Yingze, China
  • show less
    DOI: 10.1117/1.APN.3.5.056008 Cite this Article Set citation alerts
    Wenjing Zhao, Zefang Gao, Zhiheng Du, Aiping Zhai, Dong Wang, "Pattern self-referenced single-pixel computational holographic imaging," Adv. Photon. Nexus 3, 056008 (2024) Copy Citation Text show less
    References

    [1] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [2] D. Wang et al. Non-invasive super-resolution imaging through dynamic scattering media. Nat. Commun., 12, 3150(2021).

    [3] T. Zhang et al. Noninvasive imaging through scattering media with enlarged FOV using PSF estimations and correlations. Adv. Photonics Res., 4, -2300100(2023).

    [4] Y. L. Li et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light: Sci. Appl., 11, 188(2022).

    [5] D. Wang et al. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX, 3, 1-15(2020).

    [6] C. Liu et al. Continuous optical zoom microscope with extended depth of field and 3D reconstruction. PhotoniX, 3, 20(2022).

    [7] D. Gabor. Microscopy by reconstructed wave-fronts. Proc. R. Soc. A, 197, 454-487(1949).

    [8] R. F. Vanligten, H. Osterberg. Holographic microscopy. Nature, 211, 282-283(1966).

    [9] R. Bousso. The holographic principle for general backgrounds. Classical Quantum Gravity, 17, 997(2000).

    [10] J. Rosen, G. Brooker. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photonics, 2, 190-195(2008).

    [11] Y. Baek et al. Kramers-Kronig holographic imaging for high-space-bandwidth product. Optica, 6, 45-51(2019).

    [12] Z. Huang, L. Cao. “High bandwidth-utilization digital holographic multiplexing: an approach using Kramers-Kronig relations. Adv. Photonics Res., 3, 2100273(2019).

    [13] Y. Gao, L. Cao. Iterative projection meets sparsity regularization: towards practical single-shot quantitative phase imaging with in-line holography. Light: Adv. Manuf., 4, 37-53(2023).

    [14] Z. Huang et al. Dual-plane coupled phase retrieval for non-prior holographic imaging. PhotoniX, 3, 1-16(2022).

    [15] P. Ferraro et al. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl. Opt., 42, 1938-1946(2003).

    [16] S. Grilli et al. Whole optical wavefields reconstruction by digital holography. Opt. Express, 9, 294-302(2001).

    [17] Z. Yang et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun., 9, 4607(2018).

    [18] L. Zha et al. Single-pixel tracking of fast-moving object using geometric moment detection. Opt. Express, 29, 30327-30336(2021).

    [19] O. Katz, Y. Bromberg, Y. Silberberg. Compressive ghost imaging. Appl. Phys. Lett., 95, 131110(2009).

    [20] M. P. Edgar, G. M. Gibson, M. J. Padgett. Principles and prospects for single-pixel imaging. Nat. Photonics, 13, 13-20(2019).

    [21] B. Sun et al. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [22] Z. Zhang, X. Ma, J. Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun., 6, 6225(2015).

    [23] E. Hahamovich et al. Single pixel imaging at megahertz switching rates via cyclic Hadamard masks. Nat. Commun., 12, 4516(2021).

    [24] X. Zhang et al. VGenNet: variable generative prior enhanced single pixel imaging. ACS Photonics, 10, 2363-2373(2023).

    [25] D. Franklin et al. Actively addressed single pixel full-colour plasmonic display. Nat. Commun., 8, 15209(2017).

    [26] W. Yang et al. Anti-motion blur single-pixel imaging with calibrated radon spectrum. Opt. Lett., 47, 3123-3126(2022).

    [27] G. M. Gibson, S. D. Johnson, M. J. Padgett. Single-pixel imaging 12 years on: a review. Opt. Express, 28, 28190-28208(2020).

    [28] N. Radwell et al. Single-pixel infrared and visible microscope. Optica, 3, 285-289(2014).

    [29] M. J. Sun et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun., 7, 12010(2016).

    [30] Y. Wang et al. Mid-infrared single-pixel imaging at the single-photon level. Nat. Commun., 14, 1073(2023).

    [31] B. Zeng et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light: Sci. Appl., 7, 51(2018).

    [32] R. I. Stantchev et al. Real-time terahertz imaging with a single-pixel detector. Nat. Commun., 11, 2535(2020).

    [33] W. Li et al. Dual-color terahertz spatial light modulator for single-pixel imaging. Light: Sci. Appl., 11, 191(2022).

    [34] R. I. Stantchev et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv., 2, e1600190(2016).

    [35] M. P. Olbinado et al. X-ray phase-contrast ghost imaging using a single-pixel camera. Optica, 8, 1538-1544(2021).

    [36] D. Wu et al. Imaging biological tissue with high-throughput single-pixel compressive holography. Nat. Commun., 12, 4712(2021).

    [37] P. Clemente et al. Compressive holography with a single-pixel detector. Opt. Lett., 38, 2524-2527(2013).

    [38] H. González et al. High sampling rate single-pixel digital holography system employing a DMD and phase-encoded patterns. Opt. Express, 26, 20342-20350(2018).

    [39] L. Martínez-León et al. Single-pixel digital holography with phase-encoded illumination. Opt. Express, 25, 4975-4984(2017).

    [40] H. Y. Hou et al. Complex-amplitude single-pixel imaging using coherent structured illumination. Opt. Express, 29, 41827-41841(2021).

    [41] K. Ota, Y. Hayasaki. Complex-amplitude single-pixel imaging. Opt. Lett., 43, 3682-3685(2018).

    [42] L. Gao et al. OAM-basis wavefront single-pixel imaging via compressed sensing. J. Lightwave Technol., 41, 2131-2137(2022).

    [43] X. Li et al. Quantitative imaging for optical field via a single-pixel detector. Signal Process., 188, 108173(2021).

    [44] N. Yoneda, Y. Saita, T. Nomura. Common-path off-axis single-pixel holographic imaging. Opt. Express, 30, 18134-18144(2022).

    [45] P. He et al. Wavefront single-pixel imaging using a flexible SLM-based common-path interferometer. Opt. Lasers Eng., 168, 107633(2023).

    [46] Y. Liu et al. Single-pixel phase and fluorescence microscope. Opt. Express, 26, 32451-32462(2018).

    [47] S. Sun et al. DCT single-pixel detecting for wavefront measurement. Opt. Laser Technol., 163, 109326(2023).

    [48] R. Liu et al. Complex wavefront reconstruction with single-pixel detector. Appl. Phys. Lett., 114, 161901(2019).

    [49] S. Zhao et al. Fourier single-pixel reconstruction of a complex amplitude optical field. Opt. Lett., 44, 3278-3281(2019).

    [50] Y. Liu et al. Single-pixel spiral phase contrast imaging. Opt. Lett., 45, 4028-4031(2020).

    [51] Z. Du et al. DMD-based single-pixel off-axis interferometry for wavefront reconstruction of a biological sample. Appl. Phys. Lett., 123, 033702(2023).

    [52] M. Li et al. Single-pixel ptychography. Opt. Lett., 46, 1624-1627(2021).

    [53] M. Takeda, H. Ina, S. Kobayashi. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. JOSA, 72, 156-160(1982).

    [54] W. Jiang et al. Single-pixel camera based on a spinning mask. Opt. Lett., 46, 4859-4862(2021).

    [55] D. Armitage et al. Ferroelectric liquid crystal spatial light modulator. Mol. Cryst. Liq. Cryst., 144, 309-316(1987).

    [56] M. Alemohammad et al. High-speed all-optical Haar wavelet transform for real-time image compression. Opt. Express, 25, 9802-9811(2017).