[1] Shi X, Chen L. Thermoelectric materials step up[J]. Nature Materials, 15, 691-692(2016).
[2] Boccardi S, Ciampa F, Meo M. Design and development of a heatsink for thermo-electric power harvesting in aerospace applications[J]. Smart Materials and Structures, 28, 105057(2019).
[3] Zhao D, Tan G. A review of thermoelectric cooling: materials, modeling and applications[J]. Applied Thermal Engineering, 66, 15-24(2014).
[4] Zang J, Chen J, Chen Z et al. Printed flexible thermoelectric materials and devices[J]. Journal of Materials Chemistry A, 9, 19439-19464(2021).
[5] Kim D H, Lu N, Ma R et al. Epidermal electronics[J]. Science, 333, 838-843(2011).
[6] Pawlaczyk M, Lelonkiewicz M, Wieczorowski M. Age-dependent biomechanical properties of the skin[J]. Advances in Dermatology and Allergology/Postępy Dermatologii i Alergologii, 30, 302-306(2013).
[7] Zeng W, Shu L, Li Q et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications[J]. Advanced Materials, 26, 5310-5336(2014).
[8] Takagiwa Y, Pei Y, Pomrehn G et al. Validity of rigid band approximation of PbTe thermoelectric materials[J]. Apl Materials, 1, 011101(2013).
[9] Liu X, Shi X L, Zhang L et al. One-step post-treatment boosts thermoelectric properties of PEDOT: PSS flexible thin films[J]. Journal of Materials Science & Technology, 132, 81-89(2023).
[10] Jang D, Park K T, Lee S S et al. Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity[J]. Nano Energy, 97, 107143(2022).
[11] Du Y, Cai K, Chen S et al. Thermoelectric fabrics: toward power generating clothing[J]. Scientific Reports, 5, 6411(2015).
[12] Shi X L, Chen W Y, Zhang T et al. Fiber-based thermoelectrics for solid, portable, and wearable electronics[J]. Energy & Environmental Science, 14, 729-764(2021).
[13] Park K T, Lee T, Ko Y et al. High-performance thermoelectric fabric based on a stitched carbon nanotube fiber[J]. ACS Applied Materials & Interfaces, 13, 6257-6264(2021).
[14] Yang X, Zhang K. Direct wet-spun single-walled carbon nanotubes-based p-n segmented filaments toward wearable thermoelectric textiles[J]. ACS Applied Materials & Interfaces, 14, 44704-44712(2022).
[15] Ren F, Menchhofer P, Kiggans J et al. Development of thermoelectric fibers for miniature thermoelectric devices[J]. Journal of Electronic Materials, 45, 1412-1418(2016).
[16] Sun M, Tang G, Wang H et al. Enhanced thermoelectric properties of Bi2Te3-based micro-nano fibers via thermal drawing and interfacial engineering[J]. Advanced Materials, 34, 2202942(2022).
[17] Zheng Y, Zhang Q, Jin W et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics[J]. Journal of Materials Chemistry A, 8, 2984-2994(2020).
[18] Li W, Liu J, Wei J et al. Recent progress of conductive hydrogel fibers for flexible electronics: fabrications, applications, and perspectives[J]. Advanced Functional Materials, 2213485(2023).
[19] Pei Y, LaLonde A D, Wang H et al. Low effective mass leading to high thermoelectric performance[J]. Energy & Environmental Science, 5, 7963-7969(2012).
[20] Tan G, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 116, 12123-12149(2016).
[21] Du Y, Xu J, Paul B et al. Flexible thermoelectric materials and devices[J]. Applied Materials Today, 12, 366-388(2018).
[22] Yang L, Chen Z G, Dargusch M S et al. High performance thermoelectric materials: progress and their applications[J]. Advanced Energy Materials, 8, 1701797(2018).
[23] Bubnova O, Khan Z U, Malti A et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3, 4-ethylenedioxythiophene)[J]. Nature Materials, 10, 429-433(2011).
[24] Kim G H, Shao L, Zhang K et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 12, 719-723(2013).
[25] Guan X, Feng W, Wang X et al. Significant enhancement in the seebeck coefficient and power factor of p-type poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) through the incorporation of n-type MXene[J]. ACS Applied Materials & Interfaces, 12, 13013-13020(2020).
[26] Yemata T A, Kyaw A K K, Zheng Y et al. Enhanced thermoelectric performance of poly(3, 4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT: PSS) with long-term humidity stability via sequential treatment with trifluoroacetic acid[J]. Polymer International, 69, 84-92(2020).
[27] Horta-Romarís L, González-Rodríguez M V, Lasagabáster A et al. Thermoelectric properties and intrinsic conduction processes in DBSA and NaSIPA doped polyanilines[J]. Synthetic Metals, 243, 44-50(2018).
[28] Liang L, Chen G, Guo C Y. Polypyrrole nanostructures and their thermoelectric performance[J]. Materials Chemistry Frontiers, 1, 380-386(2017).
[29] Qu S, Yao Q, Wang L et al. Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy[J]. NPG Asia Materials, 8, e292(2016).
[30] Xuan Y, Liu X, Desbief S et al. Thermoelectric properties of conducting polymers: the case of poly(3-hexylthiophene)[J]. Physical Review B, 82, 115454(2010).
[31] Goncalves L M, Alpuim P, Rolo A G et al. Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications[J]. Thin Solid Films, 519, 4152-4157(2011).
[32] Song H, Liu C, Zhu H et al. Improved thermoelectric performance of free-standing PEDOT: PSS/Bi2Te3 films with low thermal conductivity[J]. Journal of Electronic Materials, 42, 1268-1274(2013).
[33] Li J Q, Li S P, Wang Q B et al. Effect of Ce-doping on thermoelectric properties in PbTe alloys prepared by spark plasma sintering[J]. Journal of Electronic Materials, 40, 2063-2068(2011).
[34] Pires A L, Cruz I F, Silva J et al. Printed flexible μ-thermoelectric device based on hybrid Bi2Te3/PVA composites[J]. ACS Applied Materials & Interfaces, 11, 8969-8981(2019).
[35] Dun C, Hewitt C A, Huang H et al. Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics[J]. ACS Applied Materials & Interfaces, 7, 7054-7059(2015).
[36] Zhang J, Zhang T, Zhang H et al. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics[J]. Advanced Materials, 32, 2002702(2020).
[37] Kim J Y, Mo J H, Kang Y H et al. Thermoelectric fibers from well-dispersed carbon nanotube/poly(vinyliedene fluoride) pastes for fiber-based thermoelectric generators[J]. Nanoscale, 10, 19766-19773(2018).
[38] Zhao W, Fan S Xiao N et al. Flexible carbon nanotube papers with improved thermoelectric properties[J]. Energy & Environmental Science, 5, 5364-5369(2012).
[39] Kim S, Song Y, Ryu S H et al. Thermoelectric behavior of bulk-type functionalized-SWCNT incorporated Te nanowire/PMMA hybrid nanocomposites with a segregated structure[J]. Synthetic Metals, 254, 56-62(2019).
[40] Liang L, Gao C, Chen G et al. Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites[J]. Journal of Materials Chemistry C, 4, 526-532(2016).
[41] Jin Q, Jiang S, Zhao Y et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nature Materials, 18, 62-68(2019).
[42] Snyder G J, Toberer E S. Complex thermoelectric materials[J]. Nature Materials, 7, 105-114(2008).
[43] Yang Y, Deng H, Fu Q. Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices[J]. Materials Chemistry Frontiers, 4, 3130-3152(2020).
[44] Wei Q, Mukaida M, Naitoh Y et al. Morphological change and mobility enhancement in PEDOT: PSS by adding co-solvents[J]. Advanced Materials, 25, 2831-2836(2013).
[45] Peng S, Wang D, Lu J et al. A review on organic polymer-based thermoelectric materials[J]. Journal of Polymers and the Environment, 25, 1208-1218(2017).
[46] Kim J Y, Jung J H, Lee D E et al. Enhancement of electrical conductivity of poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents[J]. Synthetic Metals, 126, 311-316(2002).
[47] Zhang J, Wu D, He D et al. Extraordinary thermoelectric performance realized in n‐type PbTe through multiphase nanostructure engineering[J]. Advanced Materials, 29, 1703148(2017).
[48] Jiang B, Wang W, Liu S et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics[J]. Science, 377, 208-213(2022).
[49] Hasan M N, Wahid H, Nayan N et al. Inorganic thermoelectric materials: a review[J]. International Journal of Energy Research, 44, 6170-6222(2020).
[50] Aswal D K, Basu R, Singh A. Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects[J]. Energy Conversion and Management, 114, 50-67(2016).
[51] Ran Y T, Chen W D, Zhu H W. Preparation methods, thermoelectric properties, and potential applications of SnSe[J]. Chinese Journal of Lasers, 48, 0202015(2021).
[52] Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator[J]. Journal of Power Sources, 175, 909-913(2008).
[53] Zheng X, Hu Q, Zhou X et al. Graphene-based fibers for the energy devices application: a comprehensive review[J]. Materials & Design, 201, 109476(2021).
[54] Ma W, Liu Y, Yan S et al. Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties[J]. Nano Research, 11, 741-750(2018).
[55] Culebras M, Choi K, Cho C. Recent progress in flexible organic thermoelectrics[J]. Micromachines, 9, 638(2018).
[56] Wang X, Wang H, Liu B. Carbon nanotube-based organic thermoelectric materials for energy harvesting[J]. Polymers, 10, 1196(2018).
[57] Brownlie L, Shapter J. Advances in carbon nanotube n-type doping: methods, analysis and applications[J]. Carbon, 126, 257-270(2018).
[58] Jin L, Sun T, Zhao W et al. Durable and washable carbon nanotube-based fibers toward wearable thermoelectric generators application[J]. Journal of Power Sources, 496, 229838(2021).
[59] Wang S, Liu F, Gao C et al. Enhancement of the thermoelectric property of nanostructured polyaniline/carbon nanotube composites by introducing pyrrole unit onto polyaniline backbone via a sustainable method[J]. Chemical Engineering Journal, 370, 322-329(2019).
[60] Li H, Liang Y, Liu Y et al. Engineering doping level for enhanced thermoelectric performance of carbon nanotubes/polyaniline composites[J]. Composites Science and Technology, 210, 108797(2021).
[61] Li H, Liu Y, Li P et al. Enhanced thermoelectric performance of carbon nanotubes/polyaniline composites by multiple interface engineering[J]. ACS Applied Materials & Interfaces, 13, 6650-6658(2021).
[62] Fan Z, Zhang Y, Pan L et al. Recent developments in flexible thermoelectrics: from materials to devices[J]. Renewable and Sustainable Energy Reviews, 137, 110448(2021).
[63] Qian Y, Zhang X, Xie L et al. Stretchable organic semiconductor devices[J]. Advanced Materials, 28, 9243-9265(2016).
[64] Wu H, Huang Y A, Xu F et al. Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability[J]. Advanced Materials, 28, 9881-9919(2016).
[65] Ahn J H, Je J H. Stretchable electronics: materials, architectures and integrations[J]. Journal of Physics D: Applied Physics, 45, 103001(2012).
[66] Jia Y, Jiang Q, Sun H et al. Wearable thermoelectric materials and devices for self-powered electronic systems[J]. Advanced Materials, 33, 2102990(2021).
[67] Kayser L V, Lipomi D J. Stretchable conductive polymers and composites based on PEDOT and PEDOT∶PSS[J]. Advanced Materials, 31, 1806133(2019).
[68] Sun M, Lu X, Yuan G et al. Research progress of micro-nano thermoelectric fibers[J]. Laser & Optoelectronics Progress, 60, 1316016(2023).
[69] Wen N, Fan Z, Yang S et al. High-performance stretchable thermoelectric fibers for wearable electronics[J]. Chemical Engineering Journal, 426, 130816(2021).
[70] Zhang C, Zhang Q, Zhang D et al. Highly stretchable carbon nanotubes/polymer thermoelectric fibers[J]. Nano Letters, 21, 1047-1055(2021).
[71] He X, Gu J, Hao Y et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection[J]. Chemical Engineering Journal, 450, 137937(2022).
[72] Bark H, Lee W, Lee H. Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules[J]. Macromolecular Research, 23, 795-801(2015).
[73] Ding T, Chan K H, Zhou Y et al. Scalable thermoelectric fibers for multifunctional textile-electronics[J]. Nature Communications, 11, 6006(2020).
[74] Xu H, Guo Y, Wu B et al. Highly integrable thermoelectric fiber[J]. ACS Applied Materials & Interfaces, 12, 33297-33304(2020).
[75] Wang X Q, Chan K H, Lu W et al. Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers[J]. Nature Communications, 13, 3369(2022).
[76] Nan K, Kang S D, Li K et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices[J]. Science Advances, 4, eaau5849(2018).
[77] Xu X, Zuo Y, Cai S et al. Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices[J]. Journal of Materials Chemistry C, 6, 4866-4872(2018).
[78] Sun T, Zhou B, Zheng Q et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 11, 572(2020).
[79] Zheng Y, Han X, Yang J et al. Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling[J]. Energy & Environmental Science, 15, 2374-2385(2022).
[80] Sun T, Wang L, Jiang W. Pushing thermoelectric generators toward energy harvesting from the human body: challenges and strategies[J]. Materials Today(2022).
[81] Jung M, Jeon S, Bae J. Scalable and facile synthesis of stretchable thermoelectric fabric for wearable self-powered temperature sensors[J]. RSC Advances, 8, 39992-39999(2018).
[82] Kim N, Lienemann S, Petsagkourakis I et al. Elastic conducting polymer composites in thermoelectric modules[J]. Nature Communications, 11, 1424(2020).
[83] Ding T, Zhou Y, Wang X Q et al. All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable[J]. Advanced Energy Materials, 11, 2102219(2021).
[84] Wan K, Liu Y, Santagiuliana G et al. Self-powered ultrasensitive and highly stretchable temperature-strain sensing composite yarns[J]. Materials Horizons, 8, 2513-2519(2021).
[85] Sarabia-Riquelme R, Shahi M, Brill J W et al. Effect of drawing on the electrical, thermoelectrical, and mechanical properties of wet-spun PEDOT: PSS fibers[J]. ACS Applied Polymer Materials, 1, 2157-2167(2019).
[86] Lee J A, Aliev A E, Bykova J S et al. Woven-yarn thermoelectric textiles[J]. Advanced Materials, 28, 5038-5044(2016).
[87] Hwang B, Lund A, Tian Y et al. Machine-washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT: PSS[J]. ACS Applied Materials & Interfaces, 12, 27537-27544(2020).