• Journal of Inorganic Materials
  • Vol. 39, Issue 2, 179 (2023)
Jianyu YIN1, Nishuang LIU1,*, and Yihua GAO1,2,*
Author Affiliations
  • 11. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 22. Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.15541/jim20230397 Cite this Article
    Jianyu YIN, Nishuang LIU, Yihua GAO. Recent Progress of MXene in Pressure Sensing[J]. Journal of Inorganic Materials, 2023, 39(2): 179 Copy Citation Text show less
    References

    [1] R X YANG, A K DUTTA, B W LI et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nature Communications, 2907(2023).

    [2] X Y XIONG, J LIANG, W WU. Principle and recent progress of triboelectric pressure sensors for wearable applications. Nano Energy, 108542(2023).

    [3] C M BOUTRY, Y KAIZAWA, B C SCHROEDER et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics, 314(2018).

    [4] Z Y SHI, L X MENG, X L SHI et al. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Letters, 141(2022).

    [5] T XU, Q SONG, K LIU et al. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Letters, 98(2023).

    [6] Y N YANG, R R WANG, J SUN. MXenes in flexible force sensitive sensors: a review. Journal of Inorganic Materials, 8(2019).

    [7] J CHOI, D KWON, B KIM et al. Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell. Nano Energy, 104749(2020).

    [8] S W CHEN, N WU, S Z LIN et al. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy, 104460(2020).

    [9] L DING, R JIANG, Z L TANG et al. MXene: nanoengineering and application as electrode materials for supercapacitors. Journal of Inorganic Materials, 619(2022).

    [10] Y Z WANG, T C GUO, Z N TIAN et al. MXenes for energy harvesting. Advanced Materials, 2108560(2022).

    [11] D H HO, Y Y CHOI, S B JO et al. Sensing with MXenes: progress and prospects. Advanced Materials, 2005846(2021).

    [12] T Y SU, N S LIU, Y H GAO et al. MXene/cellulose nanofiber- foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy, 106151(2021).

    [13] M NAGUIB, M W BARSOUM, Y GOGOTSI. Ten years of progress in the synthesis and development of MXenes. Advanced Materials, 2103393(2021).

    [14] A VAHIDMOHAMMADI, J ROSEN, Y GOGOTSI. The world of two-dimensional carbides and nitrides (MXenes). Science, eabf1581(2021).

    [15] Y X WANG, Y YUE, F CHENG et al. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano, 1734(2022).

    [16] J X CHEN, Z L LI, F L NI et al. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Materials Horizons, 1828(2020).

    [17] M LI, Q HUANG. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes. Journal of Inorganic Materials, 1(2019).

    [18] M NAGUIB, O MASHTALIR, J CARLE et al. Two-dimensional transition metal carbides. ACS Nano, 1322(2012).

    [19] J F ZHANG, H Y CAO, H B WANG. Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 561(2017).

    [20] P URBANKOWSKI, B ANASORI, T MAKARYAN et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 11385(2016).

    [21] M LI, J LU, K LUO et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 4730(2019).

    [22] T F LI, L L YAO, Q L LIU et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 6115(2018).

    [23] Z G WU, L S WEI, S W TANG et al. Recent progress in Ti3C2Tx MXene-based flexible pressure sensors. ACS Nano, 18880(2021).

    [24] V KAMYSBAYEV, A S FILATOV, H C HU et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 979(2020).

    [25] Y CHAE, S J KIM, S Y CHO et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale, 8387(2019).

    [26] M SEREDYCH, C E SHUCK, D PINTO et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chemistry of Materials, 3324(2019).

    [27] I PERSSON, J HALIM, T W HANSEN et al. How much oxygen can a MXene surface take before it breaks?. Advanced Functional Materials, 1909005(2020).

    [28] X F ZHAO, A VASHISTH, J W BLIVIN et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Advanced Materials Interfaces, 2000845(2020).

    [29] S S LONG, Y C FENG, F L HE et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy, 105973(2021).

    [30] Y N MA, Y YUE, H ZHANG et al. 3D synergistical MXene/ reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano, 3209(2018).

    [31] Y YUE, N S LIU, W J LIU et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy, 79(2018).

    [32] X SUN, F L YAO, J J LI. Nanocomposite hydrogel-based strain and pressure sensors: a review. Journal of Materials Chemistry A, 18605(2020).

    [33] Y Z ZHANG, K H LEE, D H ANJUM et al. MXenes stretch hydrogel sensor performance to new limits. Science Advances, eaat0098(2018).

    [34] Y L ZHANG, K X CHEN, Y S LI et al. High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor. ACS Applied Materials & Interfaces, 47350(2019).

    [35] H LIAO, X L GUO, P B WAN et al. Conductive MXene nanocomposite organohydrogel for flexible, healable, low- temperature tolerant strain sensors. Advanced Functional Materials, 1904507(2019).

    [36] Y J ZHENG, R YIN, Y ZHAO et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chemical Engineering Journal, 127720(2021).

    [37] C MA, Q YUAN, H S DU et al. Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring. ACS Applied Materials & Interfaces, 34226(2020).

    [38] M Y CHAO, L Z HE, M GONG et al. Breathable Ti3C2Tx MXene/ protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano, 9746(2021).

    [39] K WANG, Z LOU, L L WANG et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 9139(2019).

    [40] L X LIU, W CHEN, H B ZHANG et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/ silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Advanced Functional Materials, 1905197(2019).

    [41] Y S RIM, S H BAE, H J CHEN et al. Recent progress in materials and devices toward printable and flexible sensors. Advanced Materials, 4415(2016).

    [42] R Z QIN, M J HU, X LI et al. A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor. Microsystems & Nanoengineering, 100(2021).

    [43] X TAN, S WANG, Z YOU et al. High performance porous triboelectric nanogenerator based on silk fibroin@MXene composite aerogel and PDMS sponge. ACS Materials Letters, 1929(2023).

    [44] D C TAN, C M JIANG, N SUN et al. Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy, 106528(2021).

    [45] R HAN, L ZHENG, G Z LI et al. Self-poled poly(vinylidene fluoride)/MXene piezoelectric energy harvester with boosted power generation ability and the roles of crystalline orientation and polarized interfaces. ACS Applied Materials & Interfaces, 46738(2021).

    [46] D D LEI, Q X ZHANG, N S LIU et al. An ion channel-induced self-powered flexible pressure sensor based on potentiometric transduction mechanism. Advanced Functional Materials, 2108856(2022).

    [47] H L ZHAN, Z Y XIONG, C CHENG et al. Solvation-involved nanoionics: new opportunities from 2D nanomaterial laminar membranes. Advanced Materials, 1904562(2020).

    [48] Y YUE, N S LIU, T Y SU et al. Self-powered nanofluidic pressure sensor with a linear transfer mechanism. Advanced Functional Materials, 2211613(2023).

    Jianyu YIN, Nishuang LIU, Yihua GAO. Recent Progress of MXene in Pressure Sensing[J]. Journal of Inorganic Materials, 2023, 39(2): 179
    Download Citation