• Journal of Inorganic Materials
  • Vol. 39, Issue 2, 225 (2023)
Yuchen ZHANG1, Zhiyao LU1, Xiaodong HE1, Guangping SONG1..., Chuncheng ZHU2, Yongting ZHENG1 and Yuelei BAI1,*|Show fewer author(s)
Author Affiliations
  • 11. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments/Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
  • 22. School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
  • show less
    DOI: 10.15541/jim20230188 Cite this Article
    Yuchen ZHANG, Zhiyao LU, Xiaodong HE, Guangping SONG, Chuncheng ZHU, Yongting ZHENG, Yuelei BAI. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides[J]. Journal of Inorganic Materials, 2023, 39(2): 225 Copy Citation Text show less
    Bulk moduli against mean bond stiffness for M2AB (M = Zr, Hf; A = S, Se, Te)
    1. Bulk moduli against mean bond stiffness for M2AB (M = Zr, Hf; A = S, Se, Te)
    Temperature dependence of (a) CP and (b) αl of M2AB (M = Zr, Hf; A = S, Se, Te)
    2. Temperature dependence of (a) CP and (b) αl of M2AB (M = Zr, Hf; A = S, Se, Te)
    (a) Side and (b) top views of 211 type MAX phase
    S1. (a) Side and (b) top views of 211 type MAX phase
    Phonon dispersions (left) and density of states (right) of (a) Zr2SB, (b) Hf2SB, (c) Zr2SeB, (d) Hf2SeB, (e) Zr2TeB, and (f) Hf2TeB along the high symmetry directions
    S2. Phonon dispersions (left) and density of states (right) of (a) Zr2SB, (b) Hf2SB, (c) Zr2SeB, (d) Hf2SeB, (e) Zr2TeB, and (f) Hf2TeB along the high symmetry directions
    Pressure dependence of normalized bond length d/d0 of (a) M-A and (b) M-B bonds in M2AB (M = Zr, Hf; A = S, Se, Te)
    S3. Pressure dependence of normalized bond length d/d0 of (a) M-A and (b) M-B bonds in M2AB (M = Zr, Hf; A = S, Se, Te)
    CompoundacV3Most competing phasesΔHcomp/(eV·atom-1)
    Zr2SB3.52112.302132.120.6Zr2S + 0.1Zr3S4 + 0.5ZrB2-0.0749
    Exp.[8]3.50012.271130.19
    Hf2SB3.48412.122127.400.5Hf2S + 0.5HfS + 0.5HfB2-0.0512
    Exp.[8]3.46712.105126.01
    Zr2SeB3.57312.733140.780.5Zr2Se + 0.5ZrSe + 0.5ZrB2-0.0259
    Exp.[9]3.64412.632145.27
    Hf2SeB3.53812.544136.010.0185Hf23Se25 + 0.5370Hf2Se + 0.5HfB2-0.0838
    Exp.[9]3.52312.478134.11
    Hf2TeB3.61913.239150.140.5Hf3Te2 + 0.5HfB2-0.0100
    Exp.[10]3.60513.127147.72
    Table 1. M2AB (M = Zr, Hf; A = S, Se, Te) of which formation enthalpy ΔHcomp<0
    CompoundIncluded phaseacV3Most competing phasesΔHcomp/(eV·atom-1)
    Zr2SBZr, S, B, Zr2S, Zr3S4, Zr9S2, ZrS, ZrS2, ZrS3, ZrB2, B2S3, BS23.52112.302132.120.6Zr2S + 0.1Zr3S4 + 0.5ZrB2-0.0749
    Exp.[8]3.50012.271130.19
    Zr3SB20.0833Zr9S2 + 0.5833ZrB2 + 0.8333Zr2SB0.0919
    Zr4SB30.1667Zr9S2 + 1.1667ZrB2 + 0.6667Zr2SB0.1588
    Hf2SBHf, S, B, Hf2S, HfS, HfS2, HfS3, HfB2, B2S3, BS23.48412.122127.400.5Hf2S + 0.5HfS + 0.5HfB2-0.0512
    Exp.[8]3.46712.105126.01
    Hf3SB20.5Hf + 0.5HfB2 + Hf2SB0.0807
    Hf4SB3Hf + HfB2 + Hf2SB0.1422
    Zr2SeBZr, Se, B, Zr2Se, Zr2Se3, ZrSe, ZrSe2, ZrSe3, ZrB2, BSe23.57312.733140.780.5Zr2Se + 0.5ZrSe + 0.5ZrB2-0.0259
    Exp.[9]3.64412.632145.27
    Zr3SeB20.5Zr + 0.5ZrB2 + Zr2SeB0.1649
    Zr4SeB3Zr + ZrB2 + Zr2SeB0.1559
    Hf2SeBHf, Se, B, Hf2Se, Hf2Se3, HfSe2, HfSe3, Hf23Se25, HfB2, BSe23.53812.544136.010.0185Hf23Se25 +0.5370Hf2Se + 0.5HfB2-0.0838
    Exp.[9]3.52312.478134.11
    Hf3SeB20.5Hf + 0.5HfB2 + Hf2SeB0.0836
    Hf4SeB3Hf + HfB2 + Hf2SeB0.1457
    Zr2TeBZr, Te, B, Zr2Te3, Zr3Te, Zr5Te4, ZrTe, ZrTe2, ZrTe3, ZrTe5, ZrB23.65013.415154.770.2143Zr5Te4 + 0.1429Zr3Te + 0.5ZrB20.0305
    Zr3TeB20.1429Zr5Te4 + 0.4286Zr3Te + ZrB20.1321
    Zr4TeB30.0174Zr5Te4 + 0.7143Zr3Te + 1.5ZrB20.1960
    Hf2TeBHf, Te, B, Hf3Te2,Hf5Te4, HfTe2, HfTe5, HfB23.61913.239150.140.5Hf3Te2 + 0.5HfB2-0.0100
    Exp.[10]3.60513.127147.72
    Hf3TeB20.5Hf + 0.5HfB2 + Hf2TeB0.0994
    Hf4TeB3Hf + HfB2 + Hf2TeB0.1613
    Table 1. Formation enthalpy ΔHcomp of M2AB, M3AB2 and M4AB3 (M = Zr, Hf; A = S, Se, Te)
    CompoundCurve fitting equation (300-1300 K)TEC (300-1300 K)/ K-1
    Zr2SBCP = 0.83×10-2T + 96.9 - 1.28×106T-210.97×10-6 K-1
    Hf2SBCP = 0.74×10-2T + 96.6 - 1.25×106T-29.66×10-6 K-1
    Zr2SeBCP = 0.82×10-2T + 96.7 - 1.06×106T-211.11×10-6 K-1
    Hf2SeBCP = 1.28×10-2T + 94.4 - 0.89×106T-210.17×10-6 K-1
    Zr2TeBCP = 1.07×10-2T + 94.7 - 0.84×106T-212.63×10-6 K-1
    Hf2TeBCP = 0.83×10-2T + 96.1 - 0.87×106T-210.07×10-6 K-1
    Table 2. Heat capacity at constant pressure and the average linear thermal expansion coefficient of M2AB (M = Zr, Hf; A = S, Se, Te) in the temperature range of 300-1300 K
    Compoundc11/GPa c12/GPa c13/GPa c33/GPa c44/GPa G/GPa B/GPa E/GPa μG/BRef.
    Zr2SB26476912981351081482620.2060.730This work
    Hf2SB29674973181471221602920.1960.763This work
    Zr2SeB25264832771251051372500.1970.766This work
    Hf2SeB27566902921341131482700.1950.764This work
    Zr2TeB1986778225104791181940.2260.669This work
    Hf2TeB2256188257119931302250.2110.715This work
    Ti3SiC2366941003521531421873390.1920.759[16]
    Ti3GeC235794973331431421823400.1960.780[16]
    Hf2InC3098180273981051522560.210.691[37]
    Hf2SnC25171107238101871452180.250.600[37]
    Table 2. Second-order elastic constants and engineering elastic moduli of M2AB (M = Zr, Hf; A = S, Se, Te) and several typical MAX phases
    CompoundM−A bondM−B bondkmin/kmaxHmicro/GPa Hmacro/GPa
    d/nm k/GPa d/nm k/GPa
    Zr2SB0.26997458.930.24124612.750.749021.2918.40
    Exp.[8]0.268440.240329-12[12]
    Hf2SB0.26800472.370.23722652.320.724124.7421.20
    Exp.[8]0.266430.23688
    Zr2SeB0.28062442.870.24282560.540.790121.0919.30
    Exp.[9]0.280710.24729
    Hf2SeB0.27869455.170.23899595.240.764722.9720.17
    Exp.[9]0.277350.23789
    Zr2TeB0.29743432.530.24526487.090.888014.4513.12
    Hf2TeB0.29604439.170.24156517.330.848917.9016.16
    Table 3. Bond length, bond stiffness and kmin/kmax in M2AB (M = Zr, Hf; A = S, Se, Te)
    Yuchen ZHANG, Zhiyao LU, Xiaodong HE, Guangping SONG, Chuncheng ZHU, Yongting ZHENG, Yuelei BAI. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides[J]. Journal of Inorganic Materials, 2023, 39(2): 225
    Download Citation