• Laser & Optoelectronics Progress
  • Vol. 62, Issue 8, 0837004 (2025)
Xuguang Zhu* and Nan Jiang
Author Affiliations
  • College of Software, Liaoning Technical University, Huludao 125105, Liaoning , China
  • show less
    DOI: 10.3788/LOP241813 Cite this Article Set citation alerts
    Xuguang Zhu, Nan Jiang. Image Dehazing Algorithm Based on Multi-Dimensional Attention Feature Fusion[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0837004 Copy Citation Text show less
    References

    [1] Zhu Q S, Mai J M, Shao L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 24, 3522-3533(2015).

    [2] Mei X, Yang J, Zhang Y Y et al. Video image dehazing algorithm based on multi-scale Retinex with color restoration[C], 195-200(2016).

    [3] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341-2353(2011).

    [4] Li Z G, Shu H Y, Zheng C B. Multi-scale single image dehazing using Laplacian and Gaussian pyramids[J]. IEEE Transactions on Image Processing, 30, 9270-9279(2021).

    [5] Yang D, Sun J. Proximal dehaze-net: a prior learning-based deep network for single image dehazing[M]. Computer vision-ECCV 2018, 11211, 729-746(2018).

    [6] Berman D, Treibitz T, Avidan S. Non-local image dehazing[C], 1674-1682(2016).

    [7] Zheng F X, Wang X L, He D D et al. Survey of single image defogging algorithm[J]. Computer Engineering and Applications, 58, 1-14(2022).

    [8] Li W J, Liu Y Z, Liu D C et al. Overview of single image defogging algorithm based on deep learning[J]. Science and Technology & Innovation, 114-116(2024).

    [9] Cai B L, Xu X M, Jia K et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 25, 5187-5198(2016).

    [10] Li B Y, Peng X L, Wang Z Y et al. An all-in-one network for dehazing and beyond[EB/OL]. https://arxiv.org/abs/1707.06543

    [11] Dong H, Pan J S, Xiang L et al. Multi-scale boosted dehazing network with dense feature fusion[C], 2154-2164(2020).

    [12] Liu X H, Ma Y R, Shi Z H et al. GridDehazeNet: attention-based multi-scale network for image dehazing[C], 7313-7322(2019).

    [13] Qu Y Y, Chen Y Z, Huang J Y et al. Enhanced Pix2pix dehazing network[C], 8152-8160(2019).

    [14] Mei K F, Jiang A W, Li J C et al. Progressive feature fusion network for realistic image dehazing[M]. Computer vision-ACCV 2018, 11361, 203-215(2019).

    [15] Ren W Q, Ma L, Zhang J W et al. Gated fusion network for single image dehazing[C], 3253-3261(2018).

    [16] Cao R H, Zhang P C, Wang L et al. Single image defogging algorithm based on attention mechanism[J]. Laser & Optoelectronics Progress, 60, 0210011(2023).

    [17] Lin K Z, Geng J H, Cheng W Y et al. Image dehazing algorithm based on attention mechanism and Markov discriminant[J]. Laser & Optoelectronics Progress, 59, 1610003(2022).

    [18] Zhong W F, Zhao J. Image defogging algorithm based on generative adversarial network[J]. Laser & Optoelectronics Progress, 59, 0415007(2022).

    [19] Li B Y, Ren W Q, Fu D P et al. Benchmarking single image dehazing and beyond[EB/OL]. https://arxiv.org/abs/1712.04143

    [20] Ancuti C, Ancuti C O, Timofte R et al. I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images[M]. Advanced concepts for intelligent vision systems, 11182, 620-631(2018).

    [21] Yang Y, Zhang J L. Image dehazing algorithm based on haze distribution and adaptive attenuation[J]. Laser & Optoelectronics Progress, 58, 2210012(2021).

    [22] Horé A, Ziou D. Image quality metrics: PSNR vs. SSIM[C], 2366-2369(2010).

    [23] Sun X, Guo Q Y, Ge S Q. GFN: a novel joint entity and relation extraction model with redundancy and denoising strategies[J]. Knowledge-Based Systems, 300, 112137(2024).

    [24] Li B Y, Peng X L, Wang Z Y et al. AOD-Net: all-in-one dehazing network[C], 4780-4788(2017).

    [25] Li S, Kong X T, Lu C et al. GCA-Net: global context attention network for intestinal wall vascular segmentation[J]. International Journal of Computer Assisted Radiology and Surgery, 17, 569-578(2022).

    [26] Chen Y, Wang X Q, Ouyang Y. DCPDN: high-performance pedestrian detection networks for difficult conditions[J]. IEEE Access, 11, 71371-71386(2023).

    [27] Kundu S, Ari S. MsCNN: a deep learning framework for P300-based brain-computer interface speller[J]. IEEE Transactions on Medical Robotics and Bionics, 2, 86-93(2020).

    [28] Liu X, Hou C L. Research status and prospect of night image dehazing algorithm[J]. Laser & Optoelectronics Progress, 60, 2400002(2023).

    [29] Yuan H, Yan T H. Parallel multi scale attention mapping image dehazing algorithm[J]. Laser & Optoelectronics Progress, 61, 0401002(2024).

    [30] Tang Y H, Meng Y J, Lin S et al. Nonuniform defogging based on hierarchical weight interaction and Laplacian prior[J]. Laser & Optoelectronics Progress, 61, 1437003(2024).