• Laser & Optoelectronics Progress
  • Vol. 59, Issue 14, 1415025 (2022)
Rui Qu1, Yong Li1,2,*, Feng Shuang1, and Hanzhang Huang1
Author Affiliations
  • 1Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, School of Electrical Engineering, Guangxi University, Nanning 530004, Guangxi , China
  • 2Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Electrical Engineering, Guangxi University, Nanning 530004, Guangxi , China
  • show less
    DOI: 10.3788/LOP202259.1415025 Cite this Article Set citation alerts
    Rui Qu, Yong Li, Feng Shuang, Hanzhang Huang. Robotic Arm Visual Grasping Algorithm and System Based on RGB-D Images[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415025 Copy Citation Text show less
    Structure of visual grasping system
    Fig. 1. Structure of visual grasping system
    Hardware platform
    Fig. 2. Hardware platform
    Target detection process
    Fig. 3. Target detection process
    Marking of centroid points. (a) Original images; (b) marking of the target centroid coordinates
    Fig. 4. Marking of centroid points. (a) Original images; (b) marking of the target centroid coordinates
    Flowchart of connected domain marking algorithm
    Fig. 5. Flowchart of connected domain marking algorithm
    Extracted minimum bounding rectangle. (a) Images to be detected; (b) minimum bounding rectangle detected by the proposed algorithm for targets
    Fig. 6. Extracted minimum bounding rectangle. (a) Images to be detected; (b) minimum bounding rectangle detected by the proposed algorithm for targets
    Schematic of pose angle calculation
    Fig. 7. Schematic of pose angle calculation
    Marking of pose angle
    Fig. 8. Marking of pose angle
    Schematic of UR5 structure on DH coordinate system
    Fig. 9. Schematic of UR5 structure on DH coordinate system
    Grasping process and process perspective. (a)-(d) Robotic arm grasping process; (e)-(h) corresponding perspectives
    Fig. 10. Grasping process and process perspective. (a)-(d) Robotic arm grasping process; (e)-(h) corresponding perspectives
    Demonstration of single-target grasping experiment. (a) Target detection; (b) moving to target pose; (c) target grasping; (d) target placement
    Fig. 11. Demonstration of single-target grasping experiment. (a) Target detection; (b) moving to target pose; (c) target grasping; (d) target placement
    Position error and angle error
    Fig. 12. Position error and angle error
    Demonstration of multi-target grasping experiment. (a) Target detection; (b)-(d) moving to target pose and grasping the targets; (e) target placement
    Fig. 13. Demonstration of multi-target grasping experiment. (a) Target detection; (b)-(d) moving to target pose and grasping the targets; (e) target placement
    Comparative experiment display, the red box represents grasping failure, the green box represents grasping success
    Fig. 14. Comparative experiment display, the red box represents grasping failure, the green box represents grasping success
    Joint number jTranslation djalong the Z-axisTranslation ajalong the X-axisRotation αjalong the X-axisRotation θjalong the Z-axis
    1d1= 89.4590π/2θ1
    20a2= -4250θ2
    30a3= -392.250θ3
    4d4= 109.150π/2θ4
    5d5= 94.650π/2θ5
    6d6= 82.300θ6
    Table 1. DH parameters of UR5
    ParameterWood blockBoxCoke can
    Actual pose angle θ /(°)305530553055
    Measuring pose angle θ' /(°)333553573638515729275657
    Angle error Δθ /(°)35-2268-42-1-312
    Actual distance L/cm635961.852.853.165.253.864.956.161.256.361.8
    Measured distance L' /cm59.556.665.151.75369.952.368.358.172.358.269.2
    Distance error ΔL /cm3.54-2.43.3-1.1-0.14.7-1.53.4211.11.97.4
    Success rate /%100(7/7)100(7/7)85.7(6/7)
    Algorithm running time /s0.84360.83250.73440.81330.67190.69030.91840.78780.67770.79950.72650.7939
    Grasping quality(Excellent is E,Good is G)EGEEGEEEE-GG
    Table 2. Grasping results for regular objects
    ParameterConnectorStaplerScrewdriverUmbrella
    Actual pose angle θ /(°)3055305530553055
    Measuring pose angle θ' /(°)27245160383556552933555635286051
    Angle error Δθ /(°)-3-6-458510-13015-25-4
    Actual distance L /cm56.262.256.165.654.662.855.463.261.955.461.455.165.358.264.857.2
    Measured distance L' /cm5766.458.469.951.765.256.768.161.153.763.652.359.460.367.761.1
    Distance error ΔL /cm0.84.22.34.3-2.92.41.34.9-0.8-1.72.2-2.8-5.92.12.93.9
    Success rate /%71.4(5/7)71.4(5/7)57.1(4/7)85.7(6/7)
    Algorithm running time /s0.79050.79130.79070.78860.78870.83180.78870.78810.78790.72740.78740.78810.72780.78700.78830.7301
    Grasping quality(Excellent is E,Good is G)EEGGGEEEEEEE
    Table 3. Grasping results for irregular objects
    ParameterEquipment-1Equipment-2Equipment-3
    Actual pose angleθ /(°)305530553055
    Measuring pose angle θ' /(°)363450533028535433285857
    Angle error Δθ /(°)64-5-21-2-2-13-232
    Actual distance L /cm54.857.262.758.456.860.254.461.759.657.365.260.3
    Measured distance L' /cm63.3361.7760.225657.6762.0758.2460.6657.4759.7863.2252.76
    Distance error ΔL /cm8.534.57-2.48-2.40.871.873.84-1.04-2.132.48-1.98-7.54
    Success rate /%85.7(6/7)100(7/7)100(7/7)
    Algorithm running time /s0.90270.82940.75180.80820.68310.74320.83840.66780.68310.81050.74570.8018
    Grasping quality(Excellent is E,Good is G)EEGGGEGGEG
    Table 4. Grasping results for electric equipments
    ParameterBoxCola canStaplerScrewdriverCombination
    Average angle error -0.8571.428-2.429-1.2851.519
    Average distance error 1.2571.3572.8711.5851.943
    Success rate /%85.7(6/7)85.7(6/7)71.4(5/7)71.4(5/7)85.7(6/7)
    Average running time /s1.259
    Table 5. Grasping results for multi objects
    AlgorithmAverage angle error θ /(°)Average distance relative error /%Success rate /%Average running time /s
    Linemod-35.60(0/7)0.7651
    Algorithm in Ref.[61.6472.1471.4(5/7)0.7613
    Proposed algorithm1.4281.9685.7(6/7)0.7494
    Table 6. Comparative experimental results of three algorithms

    Algorithm Parameter

    Wood block

    Box

    Coke can

    Connector

    Stapler

    Screwdriver

    Umbrella

    Linemod

    SA /%

    14.3

    28.5

    0

    14.3

    28.5

    0

    14.3

    AAS /s

    0.8455

    0.8030

    0.7651

    0.8965

    0.8343

    0.8437

    0.7846

    Algorithm in Ref.[6

    SA /%

    86

    100

    71.40

    57.10

    85.70

    57.10

    71.40

    AAS /s

    0.8248

    0.7782

    0.7601

    0.8053

    0.8142

    0.7819

    0.7671

    Proposed algorithm

    SA /%

    100

    100

    85.7

    71.4

    71.4

    57.1

    85.7

    AAS /s

    0.8060

    0.7671

    0.7494

    0.7903

    0.7993

    0.7727

    0.7583

    Table 7. Comparison results of three algorithms for different targets
    MethodSingle objectMulti objects
    Total time /sIoU /%Total time /sIoU /%
    K-means0.09892.40.10593.5
    K-means+OTSU0.25896.30.32496.8
    OTSU0.07695.60.08694.2
    Improved OTSU0.02399.10.03498.9
    Table 8. Target segmentation ablation experiment results
    MethodCentroid shift /%Invalid region percentage /%
    Without CD-84.3
    CD3.213.42
    CD+MSC0.420.36
    Table 9. Connected domain ablation experiment results