• Laser & Optoelectronics Progress
  • Vol. 56, Issue 10, 102802 (2019)
Liang Pei, Yang Liu*, and Lin Gao
Author Affiliations
  • School of Geomatics, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • show less
    DOI: 10.3788/LOP56.102802 Cite this Article Set citation alerts
    Liang Pei, Yang Liu, Lin Gao. Cloud Detectionof ZY-3 Remote Sensing Images Based on Fully Convolutional Neural Network and Conditional Random Field[J]. Laser & Optoelectronics Progress, 2019, 56(10): 102802 Copy Citation Text show less
    References

    [1] Liu D W, Han L, Han X Y. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 36, 0428001(2016).

    [2] Krizhevsky A, Sutskever I. 1097-1105[2018-08-28]. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.(2012).

    [3] Chen Y, Fan R S, Wang J X et al. Cloud detection of ZY-3 satellite remote sensing images based on deep learning[J]. Acta Optica Sinica, 38, 0128005(2018).

    [4] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, 2015, Boston, MA, USA. New York: IEEE, 3431-3440(2015).

    [5] Koller D, Friedman N[M]. Probabilistic graphical models principles and techniques(2009).

    [6] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741(1984).

    [8] Xia M, Cao G, Wang G Y et al. Remote sensing image classification based on deep learning and conditional random fields[J]. Journal of Image and Graphics, 22, 1289-1301(2017).

    [9] Li Z Q, Zhu R F, Gao F et al. Hyperspectral remote sensing image classification based on three-dimensional convolution neural network combined with conditional random field optimization[J]. Acta Optica Sinica, 38, 0828001(2018).

    [10] Kumar S, Hebert M. Discriminative random fields: a discriminative framework for contextual interaction in classification. [C]//Proceedings Ninth IEEE International Conference on Computer Vision, October 13-16, 2003, Nice, France. New York: IEEE, 1150-1157(2003).

    [11] Farabet C, Couprie C, Najman L. et al. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1915-1929(2013). http://europepmc.org/abstract/med/23787344

    [12] Tompson J, Jain A, Lecun Y et al. -09-17)[2018-07-20][EB/OL]. a graphical model for human pose estimation .(2014). https://arxiv.org/abs/1406.2984v2.

    [13] Liu F, Shen C, Lin G et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2024-2039(2016). http://ieeexplore.ieee.org/document/7346484

    [14] Liu X, Wang G H, Yang H C et al. Road extraction from remote sensing image based on fully convolutional networks[J]. Remote Sensing Information, 33, 69-75(2018).

    [15] Simonyan K, Zisse R. -04-10)[2018-01-25][EB/OL]. Man A. Very deep convolutional networks for large-scale image recognition .(2015). https://arxiv.org/abs/1409.1556v6.

    [16] Krähenbühl P, Koltun V[J]. Efficient inference in fully connected CRFs with Gaussian edge potentials Advances in Neural Information Processing Systems, 2011, 109-117.

    [17] Zhao X. Study on cloud detection method for high resolution satellite remote sensing images[D]. Harbin: Harbin Institute of Technology, 40-47(2013).

    Liang Pei, Yang Liu, Lin Gao. Cloud Detectionof ZY-3 Remote Sensing Images Based on Fully Convolutional Neural Network and Conditional Random Field[J]. Laser & Optoelectronics Progress, 2019, 56(10): 102802
    Download Citation