[1] DEZIEL E, LEPINE F, DENNIE D, et al. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene[J]. Biochimica et Biophysica Acta-Bioenergetics, 1999, 1440(2-3): 244-252.
[2] CHONG H Q, LI Q X. Microbial production of rhamnolipids:opportunities, challenges and strategies[J]. Microbial Cell Factories, 2017, 16(1): 137-148.
[3] DUSANE D H, ZINJARDE S S, VENUGOPALAN V P, et al. Quorum sensing:implications on rhamnolipid biosurfactant production[J]. Biotechnology & Genetic Engineering Reviews, 2010, 27(1): 159-184.
[4] LAWNICZAK L, MARECIK R, CHRZANOWSKI L. Contributions of biosurfactants to natural or induced bioremediation[J]. Applied Microbiology & Biotechnology, 2013, 97(6): 2327-2339.
[5] HOSKOVA M, SCHREIBEROVA O, JEZDIK R, et al. Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria[J]. Bioresource Technology, 2012, 130(1): 510-516.
[6] BENINCASA M, CONTIERO J, MANRESA M A, et al. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source[J]. Journal of Food Engineering, 2002, 54(4): 283-288.
[7] MULLER M M, HORMANN B, SYLDATK C, et al. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems[J]. Applied Microbiology & Biotechnology, 2010, 87(1): 167-174.
[8] WANG Q, FANG X, BAI B, et al. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery[J]. Biotechnology and Bioengineering, 2007, 98(4): 842-853.
[9] GONG Zhijin, PENG Yanfeng, ZHANG Yiting, et al. Construction and optimization of Escherichia coli for producing rhamnolipid biosurfactant[J]. Chinese Journal of Biotechnology, 2015, 31(7): 1050-1062.
[10] CHA M, LEE N, KIM M, et al. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida[J]. Bioresource Technology, 2008, 99(7): 2192-2199.
[11] VASILEVA-TONKOVA E, GALABOVA D, STOIMENOVA E, et al. Production and properties of biosurfactants from a newly isolated Pseudomonas fluorescens HW-6 growing on hexadecane[J]. Zeitschrift Fur Naturforschung C, 2006, 61(7): 553-559.
[12] RAMETTE A, FRAPOLLI M, FISCHERLE S M, et al. Pseudomonas protegens sp. nov. widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin[J]. Systematic & Applied Microbiology, 2011, 34(3): 180-188.
[13] BARAHONA E, NAVAZO A, MARTINEZ-GRANERO F, et al. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens[J]. Applied and Environmental Microbiology, 2011, 77(15): 5412-5419.
[14] SUN Guangzheng, YAO Tuo, ZHAO Guiqin, et al. Research progress and prospects for controlling plant diseases using Pseudomofas uorescens[J].Acta Prataculturae Sinica,2015, 24(4): 174-190.
[15] RAHIM R, BURROWS L L, MONTEIRO M A, et al. Involvement of the rmL locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa[J]. Microbiology, 2000, 146(11): 2803-2814.
[16] WITTGENS A, TISO T, ARNDT T T, et al. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440[J]. Microbial Cell Factories, 2011, 10(1): 80-96.
[17] ZHU K, ROCK C O. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2008, 190(9): 3147-3154.
[18] DEZIEL E, LEPINE F, MILOT S, et al. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa:3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids[J]. Microbiology, 2003, 149(8): 2005-2013.
[19] OCHSNER U A, FIECHTER A, REISER J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa RhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis[J]. Journal of Biological Chemistry, 1994, 269(31): 19787-19795.
[20] ZHANG Y, BUCHHOLZ F, MUYRRERS J P, et al. A new logic for DNA engineering using recombination in Escherichia coli[J]. Nature Genetics, 1998, 20(2): 123-128.
[21] WANG J, SAROV M, RIENTJES J, et al. An improved recombineering approach by adding RecA to lambda Red recombination[J]. Molecular Biotechnology, 2006, 32(1): 43-53.
[22] FU J, BIAN X, HU S, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J]. Nature Biotechnology, 2012, 30(5): 440-446.
[23] WANG Q, FANG X, BAI B, et al. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery[J]. Biotechnology and Bioengineering, 2007, 98(4): 842-853.
[24] OCHSNER U A, REISER J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14): 6424-6428.
[25] SUN Xu, ZHOU Changlin, FANG Hongqing. Application of Red mediated recombination in Escherichia coli genome modification[J].Letters in Biotechnology, 2011,22(6): 873-878.
[26] ZHAO F, CUI Q, HAN S, et al. Enhanced rhamnolipid production of Pseudomonas aeruginosa SG by increasing copy number of RhlAB genes with modified promoter[J]. RSC Advances, 2015, 5(1): 70546-70552.
[27] TAVARES L F D, SILVA P M, JUNQUEIRA M, et al. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis[J]. Applied Microbiology and Biotechnology, 2012, 97(5):1909-1921.