• Nano-Micro Letters
  • Vol. 16, Issue 1, 122 (2024)
Tao Zhang1,†, Cheng-Hui Li2,†, Wenbo Li1, Zhen Wang3..., Zhongya Gu4, Jiapu Li1, Junru Yuan1, Jun Ou-Yang1, Xiaofei Yang1 and Benpeng Zhu1,*|Show fewer author(s)
Author Affiliations
  • 1School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
  • 2State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
  • 3National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), 35A Convent Drive, Bethesda, MD 20892, USA
  • 4Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01346-z Cite this Article
    Tao Zhang, Cheng-Hui Li, Wenbo Li, Zhen Wang, Zhongya Gu, Jiapu Li, Junru Yuan, Jun Ou-Yang, Xiaofei Yang, Benpeng Zhu. A Self-Healing Optoacoustic Patch with High Damage Threshold and Conversion Efficiency for Biomedical Applications[J]. Nano-Micro Letters, 2024, 16(1): 122 Copy Citation Text show less
    References

    [1] T. Zhang, J. Ou-Yang, X. Yang, W. Wei, B. Zhu, High performance KNN-based single crystal thick film for ultrasound application. Electron. Mater. Lett. 15, 1–6 (2019).

    [2] X. Pang, D. Li, J. Zhu, J. Cheng, G. Liu, Beyond antibiotics: photo/sonodynamic approaches for bacterial theranostics. Nano-Micro Lett. 12, 144 (2020).

    [3] K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021).

    [4] T. Liu, Q. Wan, C. Zou, M. Chen, G. Wan et al., Stepwise drug release from a nanoplatform under MR-assisted focused ultrasound stimulation. Chem. Eng. J. 417, 128004 (2021).

    [5] T. Zhang, Z. Wang, H. Liang, Z. Wu, J. Li et al., Transcranial focused ultrasound stimulation of periaqueductal gray for analgesia. IEEE Trans. Biomed. Eng. 69, 3155–3162 (2022).

    [6] H. Zhou, L. Niu, X. Xia, Z. Lin, X. Liu et al., Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson’s disease. IEEE Trans. Biomed. Eng. 66, 3006–3013 (2019).

    [7] W. Lee, P. Croce, R.W. Margolin, A. Cammalleri, K. Yoon et al., Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci. 19, 57 (2018).

    [8] Z. Wang, Y. Pan, H. Huang, Y. Zhang, Y. Li et al., Enhanced thrombolysis by endovascular low-frequency ultrasound with bifunctional microbubbles in venous thrombosis: in vitro and in vivo study. Front. Bioeng. Biotechnol. 10, 965769 (2022).

    [9] T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng et al., Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 8, eabk0159 (2022).

    [10] L. Jiang, Y. Yang, R. Chen, G. Lu, R. Li et al., Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application. Adv. Funct. Mater. 29, 1902522 (2019).

    [11] R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    [12] X. Du, J. Li, G. Niu, J.-H. Yuan, K.-H. Xue et al., Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat. Commun. 12, 3348 (2021).

    [13] S. Yue, F. Lin, Q. Zhang, N. Epie, S. Dong et al., Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps. Proc. Natl. Acad. Sci. U.S.A. 116, 6580–6585 (2019).

    [14] L. Wang, Y. Zhao, B. Zheng, Y. Huo, Y. Fan et al., Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer. Sci. Adv. 9, eadg8600 (2023).

    [15] Y. Jiang, H.J. Lee, L. Lan, H.A. Tseng, C. Yang et al., Optoacoustic brain stimulation at submillimeter spatial precision. Nat. Commun. 11, 881 (2020).

    [16] J. Di, J. Kim, Q. Hu, X. Jiang, Z. Gu, Spatiotemporal drug delivery using laser-generated-focused ultrasound system. J. Control. Release 220, 592–599 (2015).

    [17] T. Lee, W. Luo, Q. Li, H. Demirci, L.J. Guo, Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel. Small (2017).

    [18] J. Li, Y. Yang, Z. Chen, S. Lei, M. Shen et al., Self-healing: a new skill unlocked for ultrasound transducer. Nano Energy 68, 104348 (2020).

    [19] Y. Li, Y. Jiang, L. Lan, X. Ge, R. Cheng et al., Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. Light Sci. Appl. 11, 321 (2022).

    [20] X. Gao, X. Chen, H. Hu, X. Wang, W. Yue et al., A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat. Commun. 13, 7757 (2022).

    [21] M. Lin, H. Hu, S. Zhou, S. Xu, Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    [22] H.W. Baac, J.G. Ok, T. Lee, L.J. Guo, Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation. Nanoscale 7, 14460–14468 (2015).

    [23] N. Wen, T. Song, Z. Ji, D. Jiang, Z. Wu et al., Recent advancements in self-healing materials: Mechanicals, performances and features. React. Funct. Polym. 168, 105041 (2021).

    [24] J. Kang, D. Son, G.N. Wang, Y. Liu, J. Lopez et al., Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, e1706846 (2018).

    [25] S. Bode, L. Zedler, F.H. Schacher, B. Dietzek, M. Schmitt et al., Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 25, 1634–1638 (2013).

    [26] Y.-L. Liu, T.-W. Chuo, Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym. Chem. 4, 2194–2205 (2013).

    [27] M. Liu, J. Zhong, Z. Li, J. Rong, K. Yang et al., A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 124, 109475 (2020).

    [28] C. Sun, H. Jia, K. Lei, D. Zhu, Y. Gao et al., Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds. Polymer 160, 246–253 (2019).

    [29] J. Dai, Z. Wang, Z. Wu, Z. Fang, S. Heliu et al., Shape memory polymer constructed by π–π stacking with ultrafast photoresponse and self-healing performance. ACS Appl. Polym. Mater. 5, 2575–2582 (2023).

    [30] M. Rajczakowska, M. Szeląg, K. Habermehl-Cwirzen, H. Hedlund, A. Cwirzen, Autogenous self-healing of thermally damaged cement paste with carbon nanomaterials subjected to different environmental stimulators. J. Build. Eng. 72, 106619 (2023).

    [31] J. Xie, L. Gao, J. Hu, Q. Li, J. He, Self-healing of electrical damage in thermoset polymers via anionic polymerization. J. Mater. Chem. C 8, 6025–6033 (2020).

    [32] C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    [33] T.A. Kompan, A.S. Korenev, A.Y. Lukin, Investigation of thermal expansion of a glass–ceramic material with an extra-low thermal linear expansion coefficient. Int. J. Thermophys. 29, 1896–1905 (2008).

    [34] T. Buma, M. Spisar, M. O’Donnell, High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film. Appl. Phys. Lett. 79, 548–550 (2001).

    [35] R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt et al., Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Appl. Phys. Lett. 104, 173502 (2014).

    [36] T. Borca-Tasciuc, S. Vafaei, D.-A. Borca-Tasciuc, B.Q. Wei, R. Vajtai et al., Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. J. Appl. Phys. 98, 054309 (2005).

    [37] J. Kim, H. Kim, W.-Y. Chang, W. Huang, X. Jiang et al., Candle soot carbon nanoparticles in photoacoustics: advantages and challenges for laser ultrasound transmitters. IEEE Nanotechnol. Mag. 13, 13–28 (2019).

    [38] B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang et al., A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film. Appl. Phys. Lett. 106, 021902 (2015).

    [39] R.J. Colchester, E.J. Alles, A.E. Desjardins, A directional fibre optic ultrasound transmitter based on a reduced graphene oxide and polydimethylsiloxane composite. Appl. Phys. Lett. 114, 113505 (2019).

    [40] H. Won Baac, J.G. Ok, H.J. Park, T. Ling, S.L. Chen et al., Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 97, 234104 (2010).

    [41] E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau et al., Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions. Opt. Exp. 21, 25077–25090 (2013).

    [42] T. Lee, H.W. Baac, Q. Li, L.J. Guo, Efficient photoacoustic conversion in optical nanomaterials and composites. Adv. Opt. Mater. 6, 1800491 (2018).

    [43] Y. Gao, M. Wu, Y. Lin, J. Xu, Acoustic microfluidic separation techniques and bioapplications: a review. Micromachines 11, 921 (2020).

    [44] B. Xiong, K. Ren, Y. Shu, Y. Chen, B. Shen et al., Recent developments in microfluidics for cell studies. Adv. Mater. 26, 5525–5532 (2014).

    [45] E. Carl, Vortices and streams caused by sound waves. Phys. Rev. 73, 68–76 (1948).

    [46] K. Mansour, M.J. Soileau, E.W. Van Stryland, Nonlinear optical properties of carbon-black suspensions (ink). J. Opt. Soc. Am. B 9, 1100 (1992).

    [47] D. Wu, J. Zhang, F. Xu, X. Wen, P. Li et al., A paper-based microfluidic Dot-ELISA system with smartphone for the detection of influenza A. Microfluid. Nanofluid. 21, 43 (2017).

    [48] T.R. Porter, F. Xie, Ultrasound, microbubbles, and thrombolysis. Prog. Cardiovasc. Dis. 44, 101–110 (2001).

    [49] B. Petit, F. Yan, F. Tranquart, E. Allémann, Microbubbles and ultrasound-mediated thrombolysis: a review of recent in vitro studies. J. Drug Deliv. Sci. Technol. 22, 381–392 (2012).

    [50] J.H. Nederhoed, M. Tjaberinga, R.H.J. Otten, J.M. Evers, R.J.P. Musters et al., Therapeutic use of microbubbles and ultrasound in acute peripheral arterial thrombosis: a systematic review. Ultrasound Med. Biol. 47, 2821–2838 (2021).

    [51] R.J. Siegel, H. Luo, Ultrasound thrombolysis. Ultrasonics 48, 312–320 (2008).

    [52] B.L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs et al., Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Adv. Healthc. Mater. 10, e2100986 (2021).

    [53] X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin et al., Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv. Funct. Mater. 32, 2200589 (2022).

    [54] H. Sheng, X. Zhang, J. Liang, M. Shao, E. Xie et al., Recent advances of energy solutions for implantable bioelectronics. Adv. Healthc. Mater. 10, e2100199 (2021).

    [55] T. de Rességuier, S. Couturier, M. Boustie, J. David, G. Niérat et al., Characterization of laser-driven shocks of high intensity using piezoelectric polymers. J. Appl. Phys. 80, 3656–3661 (1996).

    [56] H.Y. Lee, M.S. Kwak, G.-T. Hwang, H.S. Ahn, R.A. Taylor et al., Direct Current piezoelectric energy harvesting based on plasmon-enhanced solar radiation pressure. Adv. Opt. Mater. 11, 2202212 (2023).

    Tao Zhang, Cheng-Hui Li, Wenbo Li, Zhen Wang, Zhongya Gu, Jiapu Li, Junru Yuan, Jun Ou-Yang, Xiaofei Yang, Benpeng Zhu. A Self-Healing Optoacoustic Patch with High Damage Threshold and Conversion Efficiency for Biomedical Applications[J]. Nano-Micro Letters, 2024, 16(1): 122
    Download Citation