[1] M LEVOY. Light fields and computational imaging. Computer, 39, 46-55(2006).
[2] BRADY D J. Optical Imaging Spectroscopy[M]. New Yk: John Wiley & Sons, 2009.
[3] WETZSTEIN G, IHRKE I, LANMAN D, et al. Computational plenoptic imaging[C]Computer Graphics Fum, 2011, 30(8): 23972426.
[4] C ZHOU, S K NAYAR. Computational cameras: convergence of optics and processing. IEEE Transactions on Image Processing, 20, 3322-3340(2011).
[5] I IHRKE, J RESTREPO, L MIGNARD-DEBISE. Principles of light field imaging: briefly revisiting 25 years of research. IEEE Signal Processing Magazine, 33, 59-69(2016).
[6] G WU, B MASIA, A JARABO et al. Light field image processing: an overview. IEEE Journal of Selected Topics in Signal Processing, 11, 926-954(2017).
[7] Chao ZUO, Qian CHEN. Computational optical imaging: an overview. Infrared and Laser Engineering, 51, 20220110(2022).
[8] Chao ZUO, Qian CHEN. Resolution, super-resolution and spatial bandwidth product expansion——some thoughts from the perspective of computational optical imaging. Chinese Optics, 15, 1105-1166(2022).
[9] Runnan ZHANG, Zewei CAI, Jiasong SUN et al. Optical-Field coherence measurement and its applications in computational imaging. Laser & Optoelectronics Progress, 58, 1811003(2021).
[10] Lu FANG, Qionghai DAI. Computational light field imaging. Acta Optica Sinica, 40, 0111001(2020).
[11] IVES F E. Parallax stereogram process of making same: US, 725567 [P]. 19030414.
[12] G LIPPMANN. La photographie integrale. Comptes-Rendus, 146, 446-451(1908).
[13] A GERSHUN. The light field. Journal of Mathematics and Physics, 18, 51-151(1939).
[14] T OKOSHI. Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays. Applied Optics, 10, 2284-2291(1971).
[15] Y A DUDNIKOV. Autostereoscopy and integral photography. Optical Technology, 37, 422-426(1970).
[16] DUDLEY L. Methods of integral photography: US, 675553[P]. 19720711.
[17] DE MONTEBELLO R L. Wideangle integral photographythe integram system[C]ThreeDimensional Imaging, 1977, 120: 7391.
[18] ADELSON E H, BERGEN J R. The Plenoptic Function The Elements of Early Vision[M]. Cambridge: Massachusetts Institute of Technology, 1991.
[19] Yaning LI, Xue WANG, Guoqing ZHOU et al. Overview of 4D light field representation. Laser & Optoelectronics Progress, 58, 1811012(2021).
[20] Yongkai YIN, Kai YU, Chunzhan YU et al. 3D imaging using geometric light field: a review. Chinese Journal of Lasers, 48, 1209001(2021).
[21] MCMILLAN L, BISHOP G. Plenoptic modeling: an imagebased rendering system[C]Proceedings of the 22nd annual conference on computer graphics interactive techniques, 1995: 3946.
[22] LEVOY M, HANRAHAN P. Light field rendering[C]Proceedings of the 23rd Annual Conference on ComputEr Graphics Interactive Techniques, 1996: 3142.
[23] GTLER S J, GRZESZCZUK R, SZELISKI R, et al. The lumigraph[C]Proceedings of the 23rd Annual Conference on Computer Graphics Interactive Techniques, 1996: 4354.
[24] TESTF M, HENNELLY B, OJEDACASTANEDA J. PhaseSpace Optics: Fundamentals Applications[M]. New Yk: McGraw Hill, 2009.
[25] E WIGNER. On the quantum correction for thermodynamic equilibrium. Physical Review, 40, 749-759(1932).
[26] L DOLIN. Beam description of weakly-inhomogeneous wave fields. Izvestiya Vysshih Uchebnyh Zavedenii, 7, 559-563(1964).
[27] A WALTHER. Radiometry and coherence. JOSA, 58, 1256-1259(1968).
[28] A WALTHER. Radiometry and coherence. JOSA, 63, 1622-1623(1973).
[29] A WALTHER. Propagation of the generalized radiance through lenses. JOSA, 68, 1606-1610(1978).
[30] M J BASTIAANS. A Frequency-domain treatment of partial coherence. Optica Acta: International Journal of Optics, 24, 261-274(1977).
[31] M J BASTIAANS. The Wigner distribution function applied to optical signals and systems. Optics Communications, 25, 26-30(1978).
[32] M J BASTIAANS. The Wigner distribution function and Hamilton's characteristics of a geometric-optical system. Optics Communications, 30, 321-326(1979).
[33] M BASTIAANS. Transport equations for the Wigner distribution function. Optica Acta: International Journal of Optics, 26, 1265-1272(1979).
[34] M J BASTIAANS. Wigner distribution function and its application to first-order optics. JOSA, 69, 1710-1716(1979).
[35] M J BASTIAANS. The wigner distribution function of partially coherent light. Optica Acta: International Journal of Optics, 28, 1215-1224(1981).
[36] M J BASTIAANS. Application of the Wigner distribution function to partially coherent light. Journal of the Optical Society of America A, 3, 1227(1986).
[37] ZHANG Z, LEVOY M. Wigner distributions how they relate to the light field[C]2009 IEEE International Conference on Computational Photography (ICCP), 2009: 110.
[38] H BARTELT, K H BRENNER, A LOHMANN. The Wigner distribution function and its optical production. Optics Communications, 32, 32-38(1980).
[39] NG R, LEVOY M, BREDIF M, et al. Light field photography with a hheld plenoptic camera[D]. Califnia: Stanfd University, 2005.
[40] W LUKOSZ. Optical systems with resolving powers exceeding the classical limit*. Journal of the Optical Society of America, 56, 1463(1966).
[41] W LUKOSZ. Optical systems with resolving powers exceeding the classical limit. II. JOSA, 57, 932-941(1967).
[42] ADELSON E H, BERGEN J R. The Plenoptic function the elements of early vision[J]. Computational Models of Visual Processing , 1991: 18.
[43] E H ADELSON, J Y A WANG. Single lens stereo with a plenoptic camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 99-106(1992).
[44] MOON P, SPENCER D E. The Photic Field[M]. Cambridge: Massachusetts Institute of Technology, 1981.
[45] M LEVOY, Z ZHANG, I MCDOWALL. Recording and controlling the 4D light field in a microscope using microlens arrays. Journal of Microscopy, 235, 144-162(2009).
[46] S B OH, S KASHYAP, R GARG et al. Rendering wave effects with augmented light field. Computer Graphics Forum, 29, 507-516(2010).
[47] CAMAHT E, LERIOS A, FUSSELL D. Unifmly sampled light fields[C]Eurographics Wkshop on Rendering Techniques, 1998: 117130.
[48] LEVIN A, FREEMAN W T, DUR F. Understing camera tradeoffs through a bayesian analysis of light field projections[C]Computer Vision–ECCV, 2008: 88101.
[49] NG R, HANRAHAN P M. Digital crection of lens aberrations in light field photography[C]International Optical Design Conference, 2006: WB2.
[50] WEI L Y, LIANG C K, MYHRE G, et al. Improving light field camera sample design with irregularity aberration[J]. ACM Transactions on Graphics , 2015, 34(4): 152: 11.
[51] N JI, D E MILKIE, E BETZIG. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods, 7, 141-147(2010).
[52] WU J, GUO Y, DENG C, et al. An integrated imaging sens f aberrationcrected 3D photography[J]. Nature , 2022: 110.
[53] R C BOLLES, H H BAKER, D H MARIMONT. Epipolar-plane image analysis: An approach to determining structure from motion. InternationaL Journal of Computer Vision, 1, 7-55(1987).
[54] FSYTH D A, PONCE J. ComputeR Vision: A Modern Approach[M]. Hoboken: Prentice Hall, 2002.
[55] CHEN S E. Quicktime VR: An imagebased approach to virtual environment navigation[C]Proceedings of the 22nd Annual Conference on Computer Graphics Interactive Techniques, 1995: 2938.
[56] CHAI J X, TONG X, CHAN S C, et al. Plenoptic sampling[C]Proceedings of the 27th Annual Conference on Computer Graphics Interactive Techniques, 2000: 307318.
[57] ISAKSEN A, MCMILLAN L, GTLER S J. Dynamically reparameterized light fields[C]Proceedings of the 27th Annual Conference on Computer Graphics Interactive Techniques, 2000: 297306.
[58] C L ZITNICK, S B KANG, M UYTTENDAELE et al. High-quality video view interpolation using a layered representation. ACM Transactions on Graphics, 23, 600-608(2004).
[59] CAO X, LIU Y, JI X, et al. Vision field capture f advanced 3DTV applications[C]Visual Communications Image Processing (VCIP), 2011: 14.
[60] JONES A, MCDOWALL I, YAMADA H, et al. Rendering f an interactive 360° light field display[C]ACM SIGGRAPH, 2007: 40
[61] BROXTON M, FLYNN J, OVERBECK R, et al. Immersive light field video with a layered mesh representation[J]. ACM Transactions on Graphics , 2020, 39(4): 186.
[62] LEVOY M. Volume Rendering Using The Fourier Projectionslice Theem[M]. Califnia: Stanfd University, 1992.
[63] DEANS S R. The Radon Transfm Some of Its Applications[M]. Nth Chelmsfd: Courier Cpation, 2007.
[64] T MALZBENDER. Fourier volume rendering. ACM Transactions on Graphics, 12, 233-250(1993).
[65] R N BRACEWELL. Strip integration in radio astronomy. Australian Journal of Physics, 9, 198-217(1956).
[66] MACOVSKI A. Medical imaging systems[J]. Prentice Hall , 1983.
[67] REN Ng. Fourier slice photography[C]ACM Siggraph, 2005: 735744.
[68] BUZUG T M. Computed tomography[C]Springer Hbook of Medical Technology, 2011: 311342.
[69] Y LIU, R ZHANG, S FENG et al. Consistency analysis of focal stack-based light field reconstruction. Optics and Lasers in Engineering, 165, 107539(2023).
[70] A LEVIN, S W HASINOFF, P GREEN. 4D frequency analysis of computational cameras for depth of field extension. ACM Transactions on Graphics, 28, 14(2009).
[71] DANSEREAU D G, PIZARRO O, WILLIAMS S B. Linear volumetric focus f light field cameras[J]. ACM Transactions on Graphics , 2015, 34(2): 15: 115: 20.
[72] LEVOY M, NG R, ADAMS A, et al. Light field microscopy[C] ACM SIGGRAPH, 2006: 924934.
[73] M BROXTON, L GROSENICK, S YANG et al. Wave optics theory and 3-D deconvolution for the light field microscope. Optics Express, 21, 25418(2013).
[74] R PREVEDEL, Y G YOON, M HOFFMANN et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods, 11, 727-730(2014).
[75] K HE, X WANG, Z W WANG et al. Snapshot multifocal light field microscopy. Optics Express, 28, 12108-12120(2020).
[76] L CONG, Z WANG, Y CHAI et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife, 6, e28158(2017).
[77] T NöBAUER, O SKOCEK, A J PERNíA-ANDRADE et al. Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy. Nature Methods, 14, 811-818(2017).
[78] X HUA, K HAN, B MANDRACCHIA et al. Light-field flow cytometry for high-resolution, volumetric and multiparametric 3D single-cell analysis. Nature Communications, 15, 1975(2024).
[79] GUO R, YANG Q, CHANG A S, et al. EventLFM: Event camera integrated Fourier light field microscopy f ultrafast 3D imaging[J]. Light : Science & Applications , 2024, 13(1): 144.
[80] ANTIPA N, NECULA S, NG R, et al. Singleshot diffuserencoded light field imaging[C]IEEE International Conference on Computational Photography (ICCP), 2016: 111.
[81] N ANTIPA, G KUO, R HECKEL et al. DiffuserCam: Lensless single-exposure 3D imaging. Optica, 5, 1(2018).
[82] F L LIU, G KUO, N ANTIPA et al. Fourier DiffuserScope: single-shot 3D Fourier light field microscopy with a diffuser. Optics Express, 28, 28969-28986(2020).
[83] YANNY K, ANTIPA N, LIBERTI W, et al. Miniscope3D: optimized singleshot miniature 3D fluescence microscopy[J]. Light : Science & Applications , 2020, 9(1): 171.
[84] A VEERARAGHAVAN, R RASKAR, A AGRAWAL et al. Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Transactions on Graphics, 26, 14(2007).
[85] VEERARAGHAVAN A, AGRAWAL A, RASKAR R, et al. Nonrefractive modulats f encoding capturing scene appearance depth[C]IEEE Conference on Computer Vision Pattern Recognition, 2008: 18.
[86] Sheng LI, Bowen WANG, Haitao GUAN. Far-field computational optical imaging techniques based on synthetic aperture: a review. Opto-Electronic Engineering, 50, 230090.(2023).
[87] WILBURN B S, SMULSKI M, LEE H H K, et al. Light field video camera[C]Media Processs, 2001: 2936.
[88] J C YANG, M EVERETT, C BUEHLER et al. A real-time distributed light field camera(2002).
[89] ZHANG C, CHEN T. A selfreconfigurable camera array[C] ACM SIGGRAPH, 2004: 151.
[90] WILBURN B, JOSHI N, VAISH V, et al. High perfmance imaging using large camera arrays[C]ACM SIGGRAPH, 2005: 765776.
[91] WILBURN B, JOSHI N, VAISH V, et al. Highspeed videography using a dense camera array[C]IEEE Computer Society Conference on Computer Vision Pattern Recognition, 2004: 1315176.
[92] X LIN, J WU, G ZHENG et al. Camera array based light field microscopy. Biomedical Optics Express, 6, 3179-3189(2015).
[93] T G GEORGIEV, K C ZHENG, B CURLESS et al. Spatio-angular resolution tradeoffs in integral photography, 263-272(2006).
[94] VENKATARAMAN K, LELESCU D, DUPARRÉ J, et al. PiCam: an ultrathin high perfmance monolithic camera array[J]. ACM Transactions on Graphics , 2013, 32(6): 166: 1166: 13.
[95] BISHOP T E, ZATI S, FAVARO P. Light field superresolution[C]IEEE International Conference on Computational Photography (ICCP), 2009: 19.
[96] T E BISHOP, P FAVARO. The light field camera: extended depth of field, aliasing, and superresolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 972-986(2012).
[97] N COHEN, S YANG, A ANDALMAN et al. Enhancing the performance of the light field microscope using wavefront coding. Optics Express, 22, 24817-24839(2014).
[98] H LI, C GUO, D KIM-HOLZAPFEL et al. Fast, volumetric live-cell imaging using high-resolution light-field microscopy. Biomedical Optics Express, 10, 29(2019).
[99] C GUO, W LIU, X HUA et al. Fourier light-field microscopy. Optics Express, 27, 25573(2019).
[100] Z LU, J WU, H QIAO et al. Phase-space deconvolution for light field microscopy. Optics Express, 27, 18131-18145(2019).
[101] G ZHENG, R HORSTMEYER, C YANG. Wide-field, high-resolution Fourier Ptychographic microscopy. Nature Photonics, 7, 739-745(2013).
[102] G ZHENG, C SHEN, S JIANG et al. Concept, implementations and applications of Fourier Ptychography. Nature Reviews Physics, 3, 207-223(2021).
[103] C ZUO, J SUN, J LI et al. Wide-field high-resolution 3D microscopy with Fourier Ptychographic diffraction tomography. Optics and Lasers in Engineering, 128, 106003(2020).
[104] L TIAN, X LI, K RAMCHANDRAN et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. Biomedical Optics Express, 5, 2376-2389(2014).
[105] N ZHOU, J SUN, R ZHANG et al. Quasi-Isotropic high-resolution Fourier Ptychographic diffraction tomography with opposite illuminations. ACS Photonics, 10, 2461-2466(2023).
[106] J SUN, C ZUO, J ZHANG et al. High-speed Fourier Ptychographic microscopy based on programmable annular illuminations. Scientific Reports, 8, 7669(2018).
[107] ZHOU N, ZHANG R, XU W, et al. HighSpeed highresolution transpt of intensity diffraction tomography with biplane parallel detection[J]. Laser & Photonics Reviews , 2024: 2400387.
[108] MARWAH K, WETZSTEIN G, BO Y, et al. Compressive light field photography using overcomplete dictionaries optimized projections[J]. ACM Transactions on Graphics , 2013, 32(4): 46: 112.
[109] N C PéGARD, H Y LIU, N ANTIPA et al. Compressive light-field microscopy for 3D neural activity recording. Optica, 3, 517(2016).
[110] Y G YOON, Z WANG, N PAK et al. Sparse decomposition light-field microscopy for high speed imaging of neuronal activity. Optica, 7, 1457-1468(2020).
[111] A LEVIN, R FERGUS, F DURAND et al. Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics, 26, 70(2007).
[112] C ZHOU, S LIN, S K NAYAR. Coded aperture pairs for depth from defocus and defocus deblurring. International Journal of Computer Vision, 93, 53-72(2011).
[113] LIANG C K, LIN T H, WONG B Y, et al. Programmable aperture photography: multiplexed light field acquisition[C]ACM SIGGRAPH, 2008, 55: 110.
[114] ZHOU C, LIN S, NAYAR S. Coded aperture pairs f depth from defocus[C]IEEE 12th International Conference on Computer Vision, 2009: 325332.
[115] C ZUO, J SUN, S FENG et al. Programmable aperture microscopy: a computational method for multi-modal phase contrast and light field imaging. Optics and Lasers in Engineering, 80, 24-31(2016).
[116] H Y LIU, J ZHONG, L WALLER. Multiplexed phase-space imaging for 3D fluorescence microscopy. Optics Express, 25, 14986(2017).
[117] KAUVAR I, CHANG J, WETZSTEIN G. Aperture interference the volumetric resolution of light field fluescence microscopy[C]IEEE International Conference on Computational Photography (ICCP), 2017: 112.
[118] CAI Z, ZHANG R, ZHOU N, et al. Programmable aperture light‐field microscopy[J]. Laser & Photonics Reviews , 2023: 2300217.
[119] LEVIN A, DUR F. Linear view synthesis using a dimensionality gap light field pri[C]IEEE Computer Society Conference on Computer Vision Pattern Recognition, 2010: 18311838.
[120] ZHANG R, ZHOU N, TANG H, et al. High‐Speed multi‐modal extended depth‐of‐field microscopy with an electrically tunable lens[J]. Laser & Photonics Reviews , 2024: 2300770.
[121] S C PARK, M K PARK, M G KANG. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, 20, 21-36(2003).
[122] R C HARDIE, K FRANZE. Photomechanical responses in drosophila photoreceptors. Science, 338, 260-263(2012).
[123] Y T LIM, J H PARK, K C KWON et al. Resolution-enhanced integral imaging microscopy that uses lens array shifting. Optics Express, 17, 19253(2009).
[124] A LLAVADOR, E SáNCHEZ-ORTIGA, J C BARREIRO et al. Resolution enhancement in integral microscopy by physical interpolation. Biomedical Optics Express, 6, 2854(2015).
[125] M U MUKATI, B K GUNTURK. Light field super resolution through controlled micro-shifts of light field sensor. Signal Processing: Image Communication, 67, 71-78(2018).
[126] M K PARK, H PARK, K I JOO et al. Fast-switching laterally virtual-moving microlens array for enhancing spatial resolution in light-field imaging system without degradation of angular sampling resolution. Scientific Reports, 9, 11297(2019).
[127] L ERDMANN, K J GABRIEL. High-resolution digital integral photography by use of a scanning microlens array. Applied Optics, 40, 5592(2001).
[128] WU J, LU Z, JIANG D, et al. Iterative tomography with digital adaptive optics permits hourlong intravital observation of 3D subcellular dynamics at millisecond scale[J]. Cell , 2021: S0092867421005328.
[129] XIONG B, ZHU T, XIANG Y, et al. Mirrenhanced scanning lightfield microscopy f longterm highspeed 3D imaging with isotropic resolution[J]. Light : Science & Applications , 2021, 10(1): 227.
[130] Y ZHANG, Y WANG, M WANG et al. Multi-focus light-field microscopy for high-speed large-volume imaging. PhotoniX, 3, 30(2022).
[131] Z LU, Y CAI, Y NIE et al. A practical guide to scanning light-field microscopy with digital adaptive optics. Nature Protocols, 17, 1953-1979(2022).
[132] Z LU, Y LIU, M JIN et al. Virtual-scanning light-field microscopy for robust snapshot high-resolution volumetric imaging. Nature Methods, 20, 735-746(2023).
[133] ZHAO Z, ZHOU Y, LIU B, et al. Twophoton synthetic aperture microscopy f minimally invasive fast 3D imaging of native subcellular behavis in deep tissue[J]. Cell , 2023, 186(11): 24752491.
[134] SAWHNEY H S, GUO Y, HANNA K, et al. Hybrid stereo camera: an IBR approach f synthesis of very high resolution stereoscopic image sequences[C]Proceedings of the 28th Annual Conference on Computer Graphics Interactive Techniques, 2001: 451460.
[135] FAVARO P. A splitsens light field camera f extended depth of field superresolution[C]Optics, Photonics, Digital Technologies f Multimedia Applications II, 2012: 1119.
[136] BOOMINATHAN V, MITRA K, VEERARAGHAVAN A. Improving resolution depthoffield of light field cameras using a hybrid imaging system[C] International Conference on Computational Photography (ICCP), 2014: 110.
[137] X WANG, L LI, G HOU. High-resolution light field reconstruction using a hybrid imaging system. Applied Optics, 55, 2580(2016).
[138] LU C H, MUENZEL S, FLEISCHER J W. Highresolution lightfield microscopy[C]Imaging Applied Optics, 2013: CTh3B. 2.
[139] C H LU, S MUENZEL, J W FLEISCHER. High-resolution light-field imaging via phase space retrieval. Applied Optics, 58, A142(2019).
[140] Z ZHANG, L BAI, L CONG et al. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nature Biotechnology, 39, 74-83(2021).
[141] LU Z, ZUO S, SHI M, et al. Longterm intravital subcellular imaging with confocal scanning lightfield microscopy[J]. Nature Biotechnology , 2024: 112.
[142] J H PARK, S K LEE, N Y JO et al. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays. Optics Express, 22, 25444(2014).
[143] N CHEN, Z REN, E Y LAM. High-resolution Fourier hologram synthesis from photographic images through computing the light field. Applied Optics, 55, 1751-1756(2016).
[144] C LIU, J QIU, M JIANG. Light field reconstruction from projection modeling of focal stack. Optics Express, 25, 11377(2017).
[145] X YIN, G WANG, W LI et al. Iteratively reconstructing 4D light fields from focal stacks. Applied Optics, 55, 8457(2016).
[146] N CHEN, C ZUO, E LAM et al. 3D imaging based on depth measurement technologies. Sensors, 18, 3711(2018).
[147] CHEN Ni, ZUO Chao, BYOUNGHO Lee. 3D imaging based on depth measurement[J]. Infrared Laser Engineering, 2019, 48(6): 0603013. (in Chinese)
CHEN Ni, ZUO Chao, BYOUNGHO Lee. 3D imaging based on depth measurement[J]. Infrared Laser Engineering , 2019, 48(6): 0603013. (in Chinese)
[148] C ZUO, Q CHEN, L TIAN et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Optics and Lasers in Engineering, 71, 20-32(2015).
[149] A ORTH, K B CROZIER. Light field moment imaging. Optics Letters, 38, 2666(2013).
[150] C ZUO, Q CHEN, A ASUNDI. Light field moment imaging: comment. Optics Letters, 39, 654(2014).
[151] J LIU, T XU, W YUE et al. Light-field moment microscopy with noise reduction. Optics Express, 23, 29154(2015).
[152] WANNER S, GOLDLUECKE B. Spatial angular variational superresolution of 4D light fields[C]Computer vision – ECCV, 2012: 608621.
[153] S WANNER, B GOLDLUECKE. Variational light field analysis for disparity estimation and super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 606-619(2014).
[154] ZHANG Z, LIU Y, DAI Q. Light field from microbaseline image pair[C]IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2015: 38003809.
[155] PENNER E, ZHANG L. Soft 3D reconstruction f view synthesis[J]. ACM Transactions on Graphics , 2017, 36(6): 235: 111.
[156] SHI L, HASSANIEH H, DAVIS A, et al. Light field reconstruction using sparsity in the continuous Fourier domain[J]. ACM Transactions on Graphics , 2015, 34(1): 12: 112: 13.
[157] S VAGHARSHAKYAN, R BREGOVIC, A GOTCHEV. Light field reconstruction using shearlet transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 133-147(2018).
[158] S VAGHARSHAKYAN, R BREGOVIC, A GOTCHEV. Accelerated shearlet-domain light field reconstruction. IEEE Journal of Selected Topics in Signal Processing, 11, 1082-1091(2017).
[159] ZUO C, QIAN J, FENG S, et al. Deep learning in optical metrology: a review[J]. Light : Science & Applications , 2022, 11(1): 39.
[160] Z WANG, L ZHU, H ZHANG et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nature Methods, 18, 551-556(2021).
[161] N WAGNER, F BEUTTENMUELLER, N NORLIN et al. Deep learning-enhanced light-field imaging with continuous validation. Nature Methods, 18, 557-563(2021).
[162] J P VIZCAíNO, F SALTARIN, Y BELYAEV et al. Learning to reconstruct confocal microscopy stacks from single light field images. IEEE Transactions on Computational Imaging, 7, 775-788(2021).
[163] WANG Y, WANG L, YANG J, et al. SpatialAngular interaction f light field image superresolution[C]Computer Vision–ECCV, 2020: 290308.
[164] WU G, ZHAO M, WANG L, et al. Light field reconstruction using deep convolutional wk on EPI[C]IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2017: 16381646.
[165] YEUNG H W F, HOU J, CHEN J, et al. Fast light field reconstruction with deep coarsetofine modeling of spatialangular clues[C] Proceedings of the European Conference on Computer Vision (ECCV), 2018: 137152.
[166] YOON Y, JEON H G, YOO D, et al. Learning a deep convolutional wk f lightfield image superresolution[C]Proceedings of the IEEE international conference on computer vision wkshops, 2015: 2432.
[167] O SKOCEK, T NöBAUER, L WEILGUNY et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nature Methods, 15, 429-432(2018).
[168] Y XUE, I G DAVISON, D A BOAS et al. Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope. Science Advances, 6, eabb7508(2020).
[169] M KHORASANINEJAD, W T CHEN, R C DEVLIN et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).
[170] PAN M, FU Y, ZHENG M, et al. Dielectric metalens f miniaturized imaging systems: progress challenges[J]. Light : Science & Applications , 2022, 11(1): 195.
[171] R J LIN, V C SU, S WANG et al. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 14, 227-231(2019).
[172] FAN Z B, QIU H Y, ZHANG H L, et al. A broadb achromatic metalens array f integral imaging in the visible[J]. Light : Science & Applications , 2019, 8(1): 67.
[173] X HUA, Y WANG, S WANG et al. Ultra-compact snapshot spectral light-field imaging. Nature Communications, 13, 2732(2022).
[174] VAISH V, GARG G, TALVALA E, et al. Synthetic aperture focusing using a shearwarp factization of the viewing transfm[C]IEEE Computer Society Conference on Computer Vision Pattern Recognition (CVPR''05)Wkshops, 2005: 129139.
[175] D J BRADY, M E GEHM, R A STACK et al. Multiscale gigapixel photography. Nature, 486, 386-389(2012).
[176] Q MA, L CAO, Z HE et al. Progress of three-dimensional light-field display [Invited]. Chinese Optics Letters, 17, 111001(2019).
[177] M MARTíNEZ-CORRAL, B JAVIDI. Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems. Advances in Optics and Photonics, 10, 512-566(2018).
[178] M YAMAGUCHI. Light-field and holographic three-dimensional displays [Invited]. JOSA A, 33, 2348-2364(2016).
[179] M MARTINEZ-CORRAL, A DORADO, J C BARREIRO et al. Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging. Proceedings of the IEEE, 105, 825-836(2017).
[180] F C HUANG, G WETZSTEIN, B A BARSKY et al. Eyeglasses-free display: towards correcting visual aberrations with computational light field displays. ACM Transactions on Graphics, 33, 1-12(2014).
[181] D LANMAN, D LUEBKE. Near-eye light field displays. ACM Transactions on Graphics, 32, 1-10(2013).