• Nano-Micro Letters
  • Vol. 16, Issue 1, 083 (2024)
An-Giang Nguyen, Min-Ho Lee, Jaekook Kim, and Chan-Jin Park*
Author Affiliations
  • Department of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
  • show less
    DOI: 10.1007/s40820-023-01294-0 Cite this Article
    An-Giang Nguyen, Min-Ho Lee, Jaekook Kim, Chan-Jin Park. Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework[J]. Nano-Micro Letters, 2024, 16(1): 083 Copy Citation Text show less
    References

    [1] Y.L. Gao, Z.H. Pan, J.G. Sun, Z.L. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022).

    [2] J.J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14(1), 166 (2022).

    [3] J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    [4] X. Zhang, Y.A. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(10), 3040–3071 (2020).

    [5] X.X. Zhu, L.G. Wang, Z.Y. Bai, J. Lu, T.P. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15(1), 75 (2023).

    [6] D.L. Vu, D. Kim, A.G. Nguyen, C.J. Park, Stabilizing interface of novel 3D-hierarchical porous carbon for high-performance lithium-sulfur batteries. Electrochim. Acta 418, 140369 (2022).

    [7] A.G. Nguyen, H.T.T. Le, R. Verma, D.L. Vu, C.J. Park, Boosting sodium-ion battery performance using an antimony nanoparticle self-embedded in a 3D nitrogen-doped carbon framework anode. Chem. Eng. J. 429, 132359 (2022).

    [8] R. Verma, A.G. Nguyen, P.N. Didwal, C.E. Moon, J. Kim et al., In-situ synthesis of antimony nanoparticles encapsulated in nitrogen-doped porous carbon framework as high performance anode material for potassium-ion batteries. Chem. Eng. J. 446, 137302 (2022).

    [9] A. Nazir, H.T.T. Le, A.G. Nguyen, J. Kim, C.J. Park, Conductive metal organic framework mediated Sb nanoparticles as high-capacity anodes for rechargeable potassium-ion batteries. Chem. Eng. J. 450, 138408 (2022).

    [10] A.G. Nguyen, R. Verma, P.N. Didwal, C.J. Park, Challenges and design strategies for alloy-based anode materials toward high-performance future-generation potassium-ion batteries. Energy Mater. 3, 300030 (2023).

    [11] J.B. Gu, Z.T. Liang, J.W. Shi, Y. Yang, Electrochemo-mechanical stresses and their measurements in sulfide-based all-solid-state batteries: a review. Adv. Energy Mater. 13(2), 2203153 (2023).

    [12] S.J. Tan, W.P. Wang, Y.F. Tian, S. Xin, Y.G. Guo, Advanced electrolytes enabling safe and stable rechargeable li-metal batteries: progress and prospects. Adv. Funct. Mater. 31(45), 2105253 (2021).

    [13] S.L. Liu, W.Y. Liu, D.L. Ba, Y.Z. Zhao, Y.H. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35(2), 2110423 (2023).

    [14] A.G. Nguyen, C.J. Park, Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J. Membr. Sci. 675, 121552 (2023).

    [15] S. Abouali, C.H. Yim, A. Merati, Y. Abu-Lebdeh, V. Thangadurai, Garnet-based solid-state Li batteries: from materials design to battery architecture. ACS Energy Lett. 6(5), 1920–1941 (2021).

    [16] F. Liang, Y.L. Sun, Y.F. Yuan, J. Huang, M.J. Hou et al., Designing inorganic electrolytes for solid-state Li-ion batteries: a perspectine of LGPS and garnet. Mater. Today 50, 418–441 (2021).

    [17] A. Paolella, X. Liu, A. Daali, W.Q. Xu, I. Hwang et al., Enabling high-performance NASICON-based solid-state lithium metal batteries towards practical conditions. Adv. Funct. Mater. 31(30), 2102765 (2021).

    [18] W. Xia, Y. Zhao, F.P. Zhao, K.G. Adair, R. Zhao et al., Antiperovskite electrolytes for solid-state batteries. Chem. Rev. 122(3), 3763–3819 (2022).

    [19] C.H. Wang, K. Adair, X.L. Sun, All-solid-state lithium metal batteries with sulfide electrolytes: understanding interfacial ion and electron transport. Acc. Mater. Res. 3(1), 21–32 (2022).

    [20] J.S. Park, C.H. Jo, S.T. Myung, Comprehensive understanding on lithium argyrodite electrolytes for stable and safe all-solid-state lithium batteries. Energy Storage Mater. 61, 102869 (2023).

    [21] J.W. Liang, E. van der Maas, J. Luo, X.N. Li, N. Chen et al., A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 12(21), 2103921 (2022).

    [22] S.H. Wang, X.W. Xu, C. Cui, C. Zeng, J.N. Liang et al., Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure. Adv. Funct. Mater. 32(7), 2108805 (2022).

    [23] P.N. Didwal, R. Verma, A.G. Nguyen, H.V. Ramasamy, G.H. Lee et al., Improving cyclability of all-solid-state batteries via stabilized electrolyte-electrode interface with additive in poly(propylene carbonate) based solid electrolyte. Adv. Sci. 9(13), 2105448 (2022).

    [24] B.B. Wei, S. Huang, Y.H. Song, X. Wang, M. Liu et al., A three-in-one C-60-integrated PEO-based solid polymer electrolyte enables superior all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 11(21), 11426–11435 (2023).

    [25] X.Y. Yang, J.X. Liu, N.B. Pei, Z.Q. Chen, R.Y. Li et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 15(1), 74 (2023).

    [26] H.M. Liang, L. Wang, A.P. Wang, Y.Z. Song, Y.Z. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023).

    [27] Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15(1), 82 (2023).

    [28] Y.A. Xu, K. Wang, X.D. Zhang, Y.B. Ma, Q.F. Peng et al., Improved Li-ion conduction and (electro)chemical stability at garnet-polymer interface through metal-nitrogen bonding. Adv. Energy Mater. 13(14), 2204377 (2023).

    [29] J. Yu, X.D. Lin, J.P. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12(2), 2102932 (2022).

    [30] Y.T. Wang, J.W. Ju, S.M. Dong, Y.Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31(28), 2101523 (2021).

    [31] A.G. Nguyen, R. Verma, G.C. Song, J. Kim, C.J. Park, In situ polymerization on a 3D ceramic framework of composite solid electrolytes for room-temperature solid-state batteries. Adv. Sci. (2023).

    [32] X.Z. Chen, W.J. He, L.X. Ding, S.Q. Wang, H.H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energ. Environ. Sci. 12(3), 938–944 (2019).

    [33] C.K. Fu, Y.L. Ma, S.F. Lou, C. Cui, L.Z. Xiang et al., A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries. J. Mater. Chem. A 8(4), 2066–2073 (2020).

    [34] C.K. Fu, Y.L. Ma, P.J. Zuo, W. Zhao, W.C. Tang et al., In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. J. Power. Sources 496, 229861 (2021).

    [35] P. Giannozzi, O. Baseggio, P. Bonfa, D. Brunato, R. Car et al., Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152(15), 154105 (2020).

    [36] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Mat. 21(39), 395502 (2009).

    [37] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli et al., Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Mat. 29(46), 465901 (2017).

    [38] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    [39] A. Kokalj, XCrySDen-a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17(3–4), 176–179 (1999).

    [40] S.H. Jiao, X.D. Ren, R.G. Cao, M.H. Engelhard, Y.Z. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018).

    [41] K. Ishiguro, H. Nemori, S. Sunahiro, Y. Nakata, R. Sudo et al., Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. J. Electrochem. Soc. 161(5), A668–A674 (2014).

    [42] L.Q. Xu, J.Y. Li, W.T. Deng, H.L. Shuai, S. Li et al., Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv. Energy Mater. 11(2), 2000648 (2021).

    [43] B.J. Sung, P.N. Didwal, R. Verma, A.G. Nguyen, D.R. Chang et al., Composite solid electrolyte comprising poly(propylene carbonate) and Li1.5Al0.5Ge1.5(PO4)(3) for long-life all-solid-state Li-ion batteries. Electrochim. Acta 392, 139007 (2021).

    [44] J.R. Wu, X.S. Wang, Q. Liu, S.W. Wang, D. Zhou et al., A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat. Commun. 12(1), 5746 (2021).

    [45] H. Fujimoto, S. Satoh, Orbital interactions and chemical hardness. J. Phys. Chem. 98(5), 1436–1441 (1994).

    [46] T.L. Jiang, P.G. He, G.X. Wang, Y. Shen, C.W. Nan et al., Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10(12), 1903376 (2020).

    [47] C.S. Bao, C.J. Zheng, M.F. Wu, Y. Zhang, J. Jin et al., 12 mu m-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 13(13), 2204028 (2023).

    [48] Y.Y. Yan, J.W. Ju, S.M. Dong, Y.T. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8(9), 2003887 (2021).

    [49] F. Jiang, Y.T. Wang, J.W. Ju, Q. Zhou, L.F. Cui et al., Percolated sulfide in salt-concentrated polymer matrices extricating high-voltage all-solid-state lithium-metal batteries. Adv. Sci. 9(25), 2202474 (2022).

    [50] X.Y. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022).

    [51] M. Yao, Q.Q. Ruan, T.H. Yu, H.T. Zhang, S.J. Zhang, Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Mater. 44, 93–103 (2022).

    [52] X.D. Lin, J. Yu, M.B. Effat, G.D. Zhou, M.J. Robson et al., Ultrathin and non-flammable dual-salt polymer electrolyte for high-energy-density lithium-metal battery. Adv. Funct. Mater. 31(17), 2010261 (2021).

    [53] P.R. Shi, J.B. Ma, M. Liu, S.K. Guo, Y.F. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602 (2023).

    [54] H. Yang, B. Zhang, M.X. Jing, X.Q. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12(39), 2201762 (2022).

    [55] J. Yu, J.P. Liu, X.D. Lin, H.M. Law, G.D. Zhou et al., A solid-like dual-salt polymer electrolyte for Li-metal batteries capable of stable operation over an extended temperature range. Energy Storage Mater. 37, 609–618 (2021).

    An-Giang Nguyen, Min-Ho Lee, Jaekook Kim, Chan-Jin Park. Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework[J]. Nano-Micro Letters, 2024, 16(1): 083
    Download Citation