• Ultrafast Science
  • Vol. 2, Issue 1, 9767251 (2022)
Mengxue Guan1,2,*, Daqiang Chen1,2, Shiqi Hu1,2, Hui Zhao1,2..., Peiwei You1,2 and Sheng Meng1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
  • 3Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808China
  • show less
    DOI: 10.34133/2022/9767251 Cite this Article
    Mengxue Guan, Daqiang Chen, Shiqi Hu, Hui Zhao, Peiwei You, Sheng Meng. Theoretical Insights into Ultrafast Dynamics in Quantum Materials[J]. Ultrafast Science, 2022, 2(1): 9767251 Copy Citation Text show less
    References

    [1] F. Giustino, “Electron-phonon interactions from first principles,” Reviews of Modern Physics, vol. 89, no. 1, article 015003, 2017

    [2] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, “Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator,” Science, vol. 340, no. 6129, pp. 167–170, 2013

    [3] N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and Dirac semimetals in three-dimensional solids,” Reviews of Modern Physics, vol. 90, no. 1, article 015001, 2018

    [4] S. Y. Kruchinin, F. Krausz, and V. S. Yakovlev, “Colloquium: strong-field phenomena in periodic systems,” Reviews of Modern Physics, vol. 90, no. 2, article 021002, 2018

    [5] M. F. Ciappina, J. A. Pérez-Hernández, A. S. Landsman, W. A. Okell, S. Zherebtsov, B. Förg, J. Schötz, L. Seiffert, T. Fennel, T. Shaaran, T. Zimmermann, A. Chacón, R. Guichard, A. Zaïr, J. W. G. Tisch, J. P. Marangos, T. Witting, A. Braun, S. A. Maier, L. Roso, M. Krüger, P. Hommelhoff, M. F. Kling, F. Krausz, and M. Lewenstein, “Attosecond physics at the nanoscale,” Reports on Progress in Physics, vol. 80, no. 5, article 054401, 2017

    [6] F. Krausz, and M. Ivanov, “Attosecond physics,” Reviews of Modern Physics, vol. 81, no. 1, pp. 163–234, 2009

    [7] P. Á. Corkum, and F. Krausz, “Attosecond science,” Nature Physics, vol. 3, no. 6, pp. 381–387, 2007

    [8] F. Rossi, and T. Kuhn, “Theory of ultrafast phenomena in photoexcited semiconductors,” Reviews of Modern Physics, vol. 74, p. 895, 2002

    [9] H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, and J. Osterwalder, “Optical control of field-emission sites by femtosecond laser pulses,” Physical Review Letters, vol. 103, no. 25, 2009

    [10] S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nature Physics, vol. 7, no. 8, pp. 656–662, 2011

    [11] T. Brabec, and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Reviews of Modern Physics, vol. 72, no. 2, pp. 545–591, 2000

    [12] S. Ghimire, and D. A. Reis, “High-harmonic generation from solids,” Nature Physics, vol. 15, no. 1, pp. 10–16, 2019

    [13] N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science, vol. 356, no. 6339, pp. 736–738, 2017

    [14] D. Park, and Y. Ahn, “Ultrashort field emission in metallic nanostructures and low-dimensional carbon materials,” Advances in Physics: X, vol. 5, no. 1, article 1726207, 2020

    [15] S. Zhou, K. Chen, M. T. Cole, Z. Li, J. Chen, C. Li, and Q. Dai, “Ultrafast field-emission electron sources based on nanomaterials,” Advanced Materials, vol. 31, no. 45, article 1805845, 2019

    [16] A. Sood, X. Shen, Y. Shi, S. Kumar, S. J. Park, M. Zajac, Y. Sun, L. Q. Chen, S. Ramanathan, X. Wang, W. C. Chueh, and A. M. Lindenberg, “Universal phase dynamics in VO2 switches revealed by ultrafast operando diffraction,” Science, vol. 373, no. 6552, pp. 352–355, 2021

    [17] S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D. H. Choe, K. J. Chang, K. Suenaga, S. W. Kim, Y. H. Lee, and H. Yang, “Phase patterning for ohmic homojunction contact in MoTe2,” Science, vol. 349, no. 6248, pp. 625–628, 2015

    [18] A. Yurtsever, R. M. van der Veen, and A. H. Zewail, “Subparticle ultrafast spectrum imaging in 4D electron microscopy,” Science, vol. 335, no. 6064, pp. 59–64, 2012

    [19] M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, “Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics,” Science, vol. 345, no. 6193, pp. 200–204, 2014

    [20] D. M. Fritz, D. A. Reis, B. Adams, R. A. Akre, J. Arthur, C. Blome, P. H. Bucksbaum, A. L. Cavalieri, S. Engemann, S. Fahy, R. W. Falcone, P. H. Fuoss, K. J. Gaffney, M. J. George, J. Hajdu, M. P. Hertlein, P. B. Hillyard, M. Horn-von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S. H. Lee, A. M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, E. Ì. D. Murray, A. J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D. P. Siddons, K. Sokolowski-Tinten, T. Tschentscher, D. von der Linde, and J. B. Hastings, “Ultrafast bond softening in bismuth: mapping a solid's interatomic potential with X-rays,” Science, vol. 315, no. 5812, pp. 633–636, 2007

    [21] E. Runge, and E. K. U. Gross, “Density-functional theory for time-dependent systems,” Physical Review Letters, vol. 52, no. 12, pp. 997–1000, 1984

    [22] M. Noda, S. A. Sato, Y. Hirokawa, M. Uemoto, T. Takeuchi, S. Yamada, A. Yamada, Y. Shinohara, M. Yamaguchi, K. Iida, I. Floss, T. Otobe, K. M. Lee, K. Ishimura, T. Boku, G. F. Bertsch, K. Nobusada, and K. Yabana, “SALMON: Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience,” Computer Physics Communications, vol. 235, pp. 356–365, 2019

    [23] N. Tancogne-Dejean, M. J. T. Oliveira, X. Andrade, H. Appel, C. H. Borca, G. le Breton, F. Buchholz, A. Castro, S. Corni, A. A. Correa, U. de Giovannini, A. Delgado, F. G. Eich, J. Flick, G. Gil, A. Gomez, N. Helbig, H. Hübener, R. Jestädt, J. Jornet-Somoza, A. H. Larsen, I. V. Lebedeva, M. Lüders, M. A. L. Marques, S. T. Ohlmann, S. Pipolo, M. Rampp, C. A. Rozzi, D. A. Strubbe, S. A. Sato, C. Schäfer, I. Theophilou, A. Welden, and A. Rubio, “Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems,” The Journal of Chemical Physics, vol. 152, no. 12, article 124119, 2020

    [24] C. A. Ullrich Time-Dependent Density-Functional Theory: Concepts and Applications (OUP), Oxford University Press (OUP), Oxford, 2011

    [25] C. Si, D. Choe, W. Xie, H. Wang, Z. Sun, J. Bang, and S. Zhang, “Photoinduced vacancy ordering and phase transition in MoTe2,” Nano Letters, vol. 19, no. 6, pp. 3612–3617, 2019

    [26] N. Tancogne-Dejean, M. A. Sentef, and A. Rubio, “Ultrafast modification of Hubbard U in a strongly correlated material: ab initio high-harmonic generation in NiO,” Physical Review Letters, vol. 121, no. 9, article 097402, 2018

    [27] M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, “The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets,” Physics Reports, vol. 324, no. 1, pp. 1–105, 2000

    [28] B. F. Curchod, and T. J. Martínez, “Ab initio nonadiabatic quantum molecular dynamics,” Chemical Reviews, vol. 118, no. 7, pp. 3305–3336, 2018

    [29] J. C. Tully, and R. K. Preston, “Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2,” The Journal of Chemical Physics, vol. 55, no. 2, pp. 562–572, 1971

    [30] B. F. Curchod, I. Tavernelli, and U. Rothlisberger, “Trajectory-based solution of the nonadiabatic quantum dynamics equations: an on-the-fly approach for molecular dynamics simulations,” Physical Chemistry Chemical Physics, vol. 13, no. 8, pp. 3231–3236, 2011

    [31] D. Mac Kernan, G. Ciccotti, and R. Kapral, “Trotter-based simulation of quantum-classical dynamics,” The Journal of Physical Chemistry B, vol. 112, no. 2, pp. 424–432, 2008

    [32] F. Agostini, S. K. Min, A. Abedi, and E. Gross, “Quantum-classical nonadiabatic dynamics: coupled-vs independent-trajectory methods,” Journal of Chemical Theory Computation, vol. 12, no. 5, pp. 2127–2143, 2016

    [33] J. Tully, “Mixed quantum–classical dynamics,” Faraday Discussions, vol. 110, pp. 407–419, 1998

    [34] H. D. Meyera, and W. H. Miller, “A classical analog for electronic degrees of freedom in nonadiabatic collision processes,” The Journal of Chemical Physics, vol. 70, no. 7, pp. 3214–3223, 1979

    [35] S. Meng, and E. Kaxiras, “Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations,” The Journal of Chemical Physics, vol. 129, no. 5, article 054110, 2008

    [36] C. Lian, M. Guan, S. Hu, J. Zhang, and S. Meng, “Photoexcitation in solids: first-principles quantum simulations by real-time TDDFT,” Advanced Theory and Simulations, vol. 1, no. 8, article 1800055, 2018

    [37] P. You, D. Chen, C. Lian, C. Zhang, and S. Meng, “First-principles dynamics of photoexcited molecules and materials towards a quantum description,” Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 11, no. 2, 2021

    [38] M. Guan, S. Hu, H. Zhao, C. Lian, and S. Meng, “Toward attosecond control of electron dynamics in two-dimensional materials,” Applied Physics Letters, vol. 116, no. 4, article 043101, 2020

    [39] Y. Cheng, H. Hong, H. Zhao, C. Wu, Y. Pan, C. Liu, Y. Zuo, Z. Zhang, J. Xie, J. Wang, D. Yu, Y. Ye, S. Meng, and K. Liu, “Ultrafast optical modulation of harmonic generation in two-dimensional materials,” Nano Letters, vol. 20, no. 11, pp. 8053–8058, 2020

    [40] M.-X. Guan, C. Lian, S.-Q. Hu, H. Liu, S.-J. Zhang, J. Zhang, and S. Meng, “Cooperative evolution of intraband and interband excitations for high-harmonic generation in strained MoS2,” Physical Review B, vol. 99, no. 18, article 184306, 2019

    [41] H. Lakhotia, H. Y. Kim, M. Zhan, S. Hu, S. Meng, and E. Goulielmakis, “Laser picoscopy of valence electrons in solids,” Nature, vol. 583, no. 7814, pp. 55–59, 2020

    [42] M. X. Guan, E. Wang, P. W. You, J. T. Sun, and S. Meng, “Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe2,” Nature Communications, vol. 12, no. 1, p. 1885, 2021

    [43] C. Lian, S. J. Zhang, S. Q. Hu, M. X. Guan, and S. Meng, “Ultrafast charge ordering by self-amplified exciton-phonon dynamics in TiSe2,” Nature Communications, vol. 11, no. 1, p. 43, 2020

    [44] J. Zhang, C. Lian, M. Guan, W. Ma, H. Fu, H. Guo, and S. Meng, “Photoexcitation induced quantum dynamics of charge density wave and emergence of a collective mode in 1T-TaS2,” Nano Letters, vol. 19, no. 9, pp. 6027–6034, 2019

    [45] K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, F. Bultmark, H. Gross, C. Ambrosch-Draxl, C. Persson, C. Brouder, and R. Armiento The elk FP-LAPW code, ELK, 2016,

    [46] A. O. Dohn, E. Ö. Jónsson, G. Levi, J. J. Mortensen, O. Lopez-Acevedo, K. S. Thygesen, K. W. Jacobsen, J. Ulstrup, N. E. Henriksen, K. B. Møller, and H. Jónsson, “Grid-based projector augmented wave (GPAW) implementation of quantum mechanics/molecular mechanics (QM/MM) electrostatic embedding and application to a solvated diplatinum complex,” Journal of Chemical Theory and Computation, vol. 13, no. 12, pp. 6010–6022, 2017

    [47] S. K. Sundaram, and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nature Materials, vol. 1, no. 4, pp. 217–224, 2002

    [48] D. B. Williams, and C. B. Carter Transmission Electron Microscopy, Springer, 1996

    [49] W. Yuan, D. Zhang, Y. Ou, K. Fang, B. Zhu, H. Yang, T. W. Hansen, J. B. Wagner, Z. Zhang, Y. Gao, and Y. Wang, “Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2,” Angewandte Chemie, vol. 130, no. 51, pp. 17069–17073, 2018

    [50] J. C. Johannsen, S. Ulstrup, F. Cilento, A. Crepaldi, M. Zacchigna, C. Cacho, I. C. E. Turcu, E. Springate, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, and P. Hofmann, “Direct view of hot carrier dynamics in graphene,” Physical Review Letters, vol. 111, no. 2, article 027403, 2013

    [51] P. Hein, S. Jauernik, H. Erk, L. Yang, Y. Qi, Y. Sun, C. Felser, and M. Bauer, “Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe2,” Nature Communications, vol. 11, no. 1, p. 2613, 2020

    [52] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nature Physics, vol. 7, no. 2, pp. 138–141, 2011

    [53] J. L. Krause, K. J. Schafer, and K. C. Kulander, “High-order harmonic generation from atoms and ions in the high intensity regime,” Physical Review Letters, vol. 68, no. 24, pp. 3535–3538, 1992

    [54] F. Yao, C. Liu, C. Chen, S. Zhang, Q. Zhao, F. Xiao, M. Wu, J. Li, P. Gao, J. Zhao, X. Bai, S. Maruyama, D. Yu, E. Wang, Z. Sun, J. Zhang, F. Wang, and K. Liu, “Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation,” Nature Communications, vol. 9, no. 1, p. 3387, 2018

    [55] G. Vampa, T. Hammond, N. Thiré, B. Schmidt, F. Légaré, C. McDonald, T. Brabec, D. Klug, and P. Corkum, “All-optical reconstruction of crystal band structure,” Physical Review Letters, vol. 115, no. 19, article 193603, 2015

    [56] T. T. Luu, and H. J. Wörner, “Measurement of the Berry curvature of solids using high-harmonic spectroscopy,” Nature Communications, vol. 9, no. 1, p. 916, 2018

    [57] L. Li, P. Lan, X. Zhu, T. Huang, Q. Zhang, M. Lein, and P. Lu, “Reciprocal-space-trajectory perspective on high-harmonic generation in solids,” Physical Review Letters, vol. 122, no. 19, article 193901, 2019

    [58] D. Bauer, and K. K. Hansen, “High-harmonic generation in solids with and without topological edge states,” Physical Review Letters, vol. 120, no. 17, article 177401, 2018

    [59] S. Hüller, and J. Meyer-ter-Vehn, “High-order harmonic radiation from solid layers irradiated by subpicosecond laser pulses,” Physical Review A, vol. 48, no. 5, pp. 3906–3909, 1993

    [60] P. Kálmán, and T. Brabec, “Generation of coherent hard-x-ray radiation in crystalline solids by high-intensity femtosecond laser pulses,” Physical Review A, vol. 52, no. 1, pp. R21–R24, 1995

    [61] G. Vampa, C. McDonald, G. Orlando, D. Klug, P. Corkum, and T. Brabec, “Theoretical analysis of high-harmonic generation in solids,” Physical Review Letters, vol. 113, no. 7, article 073901, 2014

    [62] D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations,” Physical Review B, vol. 77, no. 7, article 075330, 2008

    [63] Y. Kobayashi, C. Heide, H. K. Kelardeh, A. Johnson, F. Liu, T. F. Heinz, D. A. Reis, and S. Ghimire, “Polarization flipping of even-order harmonics in monolayer transition-metal dichalcogenides,” Ultrafast Science, vol. 2021, article 9820716, pp. 1–9, 2021

    [64] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science, vol. 320, no. 5883, pp. 1614–1617, 2008

    [65] B. Xue, Y. Tamaru, Y. Fu, H. Yuan, P. Lan, O. D. Mücke, A. Suda, K. Midorikawa, and E. J. Takahashi, “A custom-tailored multi-TW optical electric field for gigawatt soft-X-ray isolated attosecond pulses,” Ultrafast Science, vol. 2021, article 9828026, pp. 1–13, 2021

    [66] J. Mauritsson, J. M. Dahlström, E. Mansten, and T. Fordell, “Sub-cycle control of attosecond pulse generation using two-colour laser fields,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 42, no. 13, article 134003, 2009

    [67] I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Physical Review Letters, vol. 94, no. 24, article 243901, 2005

    [68] X. Zhu, Y. Cao, J. Zhang, E. W. Plummer, and J. Guo, “Classification of charge density waves based on their nature,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 8, pp. 2367–2371, 2015

    [69] M. Calandra, and F. Mauri, “Charge-density wave and superconducting dome in TiSe2 from electron-phonon interaction,” Physical Review Letters, vol. 106, no. 19, 2011

    [70] C. Chen, B. Singh, H. Lin, and V. M. Pereira, “Reproduction of the charge density wave phase diagram in1T−TiSe2 Exposes its excitonic character,” Physical Review Letters, vol. 121, no. 22, article 226602, 2018

    [71] T. Rohwer, S. Hellmann, M. Wiesenmayer, C. Sohrt, A. Stange, B. Slomski, A. Carr, Y. Liu, L. M. Avila, M. Kalläne, S. Mathias, L. Kipp, K. Rossnagel, and M. Bauer, “Collapse of long-range charge order tracked by time-resolved photoemission at high momenta,” Nature, vol. 471, no. 7339, pp. 490–493, 2011

    [72] L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P. S. Cornaglia, A. Georges, and M. Wolf, “Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition,” Physical Review Letters, vol. 97, no. 6, article 067402, 2006

    [73] M. Eichberger, H. Schäfer, M. Krumova, M. Beyer, J. Demsar, H. Berger, G. Moriena, G. Sciaini, and R. J. Miller, “Snapshots of cooperative atomic motions in the optical suppression of charge density waves,” Nature, vol. 468, no. 7325, pp. 799–802, 2010

    [74] E. J. Sie, C. M. Nyby, C. D. Pemmaraju, S. J. Park, X. Shen, J. Yang, M. C. Hoffmann, B. K. Ofori-Okai, R. Li, A. H. Reid, S. Weathersby, E. Mannebach, N. Finney, D. Rhodes, D. Chenet, A. Antony, L. Balicas, J. Hone, T. P. Devereaux, T. F. Heinz, X. Wang, and A. M. Lindenberg, “An ultrafast symmetry switch in a Weyl semimetal,” Nature, vol. 565, no. 7737, pp. 61–66, 2019

    [75] M. Y. Zhang, Z. X. Wang, Y. N. Li, L. Y. Shi, D. Wu, T. Lin, S. J. Zhang, Y. Q. Liu, Q. M. Liu, J. Wang, T. Dong, and N. L. Wang, “Light-induced subpicosecond lattice symmetry switch inMoTe2,” Physical Review X, vol. 9, no. 2, article 021036, 2019

    [76] R. Yu, H. Weng, Z. Fang, H. Ding, and X. Dai, “Determining the chirality of Weyl fermions from circular dichroism spectra in time-dependent angle-resolved photoemission,” Physical Review B, vol. 93, no. 20, article 205133, 2016

    [77] C.-K. Chan, N. H. Lindner, G. Refael, and P. A. Lee, “Photocurrents in Weyl semimetals,” Physical Review B, vol. 95, no. 4, article 041104(R), 2017

    [78] R. V. Anže Mraz, M. Diego, A. Kranjec, D. Svetin, Y. Gerasimenko, V. Sever, I. A. Mihailovic, J. Ravnik, I. Vaskivskyi, M. D'Antuono, D. Stornaiulo, F. Tafuri, D. Kazazis, Y. Ekinci, and D. Mihailovic, “Energy efficient manipulation of topologically protected states in non-volatile ultrafast charge configuration memory devices,”, 2021,

    [79] A. de la Torre, D. M. Kennes, M. Claassen, S. Gerber, J. W. McIver, and M. A. Sentef, “Nonthermal pathways to ultrafast control in quantum materials,”, 2021,

    [80] P. You, J. Xu, C. Lian, C. Zhang, X.-Z. Li, E.-G. Wang, and S. Meng, “Quantum dynamics simulations: combining path integral nuclear dynamics and real-time TDDFT,” Electronic Structure, vol. 1, no. 4, article 044005, 2019

    Mengxue Guan, Daqiang Chen, Shiqi Hu, Hui Zhao, Peiwei You, Sheng Meng. Theoretical Insights into Ultrafast Dynamics in Quantum Materials[J]. Ultrafast Science, 2022, 2(1): 9767251
    Download Citation