• Nano-Micro Letters
  • Vol. 16, Issue 1, 013 (2024)
Huichao Dai1,†, Yuan Chen1,2,†, Yueyue Cao1, Manli Fu1..., Linnan Guan1, Guoqun Zhang1, Lei Gong1, Mi Tang3, Kun Fan4 and Chengliang Wang1,2,*|Show fewer author(s)
Author Affiliations
  • 1School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
  • 2Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou 325035, People’s Republic of China
  • 3Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, People’s Republic of China
  • 4School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01239-7 Cite this Article
    Huichao Dai, Yuan Chen, Yueyue Cao, Manli Fu, Linnan Guan, Guoqun Zhang, Lei Gong, Mi Tang, Kun Fan, Chengliang Wang. Structural Isomers: Small Change with Big Difference in Anion Storage[J]. Nano-Micro Letters, 2024, 16(1): 013 Copy Citation Text show less
    References

    [1] Y. Chen, C. Wang, Designing high performance organic batteries. Acc. Chem. Res. 53, 2636 (2020).

    [2] Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280 (2013).

    [3] Y. Chen, H. Dai, K. Fan, G. Zhang, M. Tang et al., A recyclable and scalable high-capacity organic battery. Angew. Chem. Int. Ed. 62, e202302539 (2023).

    [4] C. Wang, Weak intermolecular interactions for strengthening organic batteries. Energy Environ. Mater. 3, 441 (2020).

    [5] C. Chen, C.S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023).

    [6] X.L. Chen, M. Xie, Z.L. Zheng, X. Luo, H. Jin et al., Multiple accessible redox-active sites in a robust covalent organic framework for high-performance potassium storage. J. Am. Chem. Soc. 145, 5105 (2023).

    [7] C. Peng, G.H. Ning, J. Su, G. Zhong, W. Tang et al., Reversible multi-electron redox chemistry of π-conjugated n-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017).

    [8] G. Zhang, Y. Chen, L. Fu, L. Zheng, K. Fan et al., Regulating the solvation sheath of zinc ions by supramolecular coordination chemistry toward ultrastable zinc anodes. SmartMat (2023).

    [9] Y. Chen, S.M. Zhuo, Z.Y. Li, C.L. Wang, Redox polymers for rechargeable metal-ion batteries. EnergyChem. 2, 100030 (2020).

    [10] J. Kim, Y. Kim, J. Yoo, G. Kwon, Y. Ko et al., Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54 (2023).

    [11] K. Fan, C. Zhang, Y. Chen, Y. Wu, C. Wang, The chemical states of conjugated coordination polymers. Chem 7, 1224 (2021).

    [12] S. Yang, G. Yang, Adsorption and isomerization of amino acids within zeolites: impacts of acidity, amine functionalization, pore topology and sidechains. Mol. Catal. 493, 111088 (2020).

    [13] V.L. Murphy, B. Kahr, Planar hydrocarbons more optically active than their isomeric helicenes. J. Am. Chem. Soc. 133, 12918 (2011).

    [14] A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton et al., Rifm fragrance ingredient safety assessment, anethole (isomer unspecified), cas registry number 104-46-1. Food Chem. Toxicol. 159, 112645 (2022).

    [15] T. Schnitzer, H. Wennemers, Influence of the trans/cis conformer ratio on the stereoselectivity of peptidic catalysts. J. Am. Chem. Soc. 139, 15356 (2017).

    [16] J.G. Xu, Q.P. Hu, Y. Liu, Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem. 60, 11625 (2012).

    [17] B. Salehi, A.P. Mishra, I. Shukla, M. Sharifi-Rad, M.D. Contreras et al., Thymol, thyme, and other plant sources: health and potential uses. Phytother. Res. 32, 1688 (2018).

    [18] S. Wang, Y. Yao, Z. Su, Y. Liu, H. Xu, The change of hydrogen position on pi-conjugated bridge to affect nlo property of D(–NH2)-π(DHTPs)-A(–NO2) system. Comput. Theor. Chem. 1220, 114004 (2023).

    [19] Y. Huang, G. Zhang, R. Zhao, D. Zhang, Tetraphenylethene-based cis/trans isomers for targeted fluorescence sensing and biomedical applications. Chem. Eur. J. 29, e202300539 (2023).

    [20] Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34, 2200662 (2022).

    [21] T. Sun, Q. Sun, Y. Yu, X. Zhang, Polypyrrole as an ultrafast organic cathode for dual-ion batteries. eScience 1, 186 (2021).

    [22] K.S. Varma, N. Sasaki, R.A. Clark, A.E. Underhill, O. Simonsen et al., A new improved synthesis and x-ray crystal structure of [1,4]dithiino[2,3-b]-1,4-dithiin. J. Heterocycl. Chem. 25, 783 (1988).

    [23] Y. Zhao, D.G. Truhlar, The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215 (2007).

    [24] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. J. Chem. Phys. 132, 154104 (2010).

    [25] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).

    [26] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012).

    [27] W. Humphrey, A. Dalke, K. Schulten, Vmd: Visual molecular dynamics. J. Mol. Graph. Model. 14, 33 (1996).

    [28] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    [29] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    [30] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    [31] A. Batsanov, Tetrathiafulvalene revisited. Acta Cryst. 62, o501 (2006).

    [32] H. Cui, T. Wang, Z. Huang, G. Liang, Z. Chen et al., High-voltage organic cathodes for zinc-ion batteries through electron cloud and solvation structure regulation. Angew. Chem. Int. Ed. 61, e202203453 (2022).

    [33] N. Patil, C. Cruz, D. Ciurduc, A. Mavrandonakis, J. Palma et al., An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TfSi)2-based concentrated aqueous electrolytes. Adv. Energy Mater. 11, 2100939 (2021).

    [34] D.E. Ciurduc, C. de la Cruz, N. Patil, A. Mavrandonakis, R. Marcilla, An improved peg-based molecular crowding electrolyte using Zn(TFSI)2 vs. Zn(OTf)2 for aqueous Zn//V2O5 battery. Mater. Today Energy 36, 101339 (2023).

    [35] D.E. Ciurduc, C.D.L. Cruz, N. Patil, A. Mavrandonakis, R. Marcilla, Molecular crowding bi-salt electrolyte for aqueous zinc hybrid batteries. Energy Stor. Mater. 53, 532 (2022).

    [36] M. Tang, C. Jiang, S. Liu, X. Li, Y. Chen et al., Small amount cofs enhancing storage of large anions. Energy Stor. Mater. 27, 35 (2020).

    [37] C. Jiang, Y. Gu, M. Tang, Y. Chen, Y. Wu et al., Toward stable lithium plating/stripping by successive desolvation and exclusive transport of li ions. ACS Appl. Mater. Interfaces 12, 10461 (2020).

    [38] C. Luo, Y. Zhu, Y. Xu, Y. Liu, T. Gao et al., Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J. Power. Sources 250, 372 (2014).

    [39] M. Fu, C. Zhang, Y. Chen, K. Fan, G. Zhang et al., A thianthrene-based small molecule as a high-potential cathode for lithium-organic batteries. Chem. Commun. 58, 11993 (2022).

    [40] T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021).

    [41] R.L. Meline, R.L. Elsenbaumer, An expedient, cost effective large scale synthesis of tetrathiafulvalene. J. Chem. Soc. Perkin Trans. 1(16), 2467 (1998).

    [42] H. Wang, P. Hu, J. Yang, G. Gong, L. Guo et al., Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 27, 2348 (2015).

    [43] Y. Chen, H. Li, M. Tang, S. Zhuo, Y. Wu et al., Capacitive conjugated ladder polymers for fast-charge and -discharge sodium-ion batteries and hybrid supercapacitors. J. Mater. Chem. A 7, 20891 (2019).

    [44] T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023).

    [45] V. Mukherjee, D.P. Ojha, Spectroscopic investigation of some electron withdrawing groups substituted ttf donor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 231, 117849 (2020).

    [46] Y. Wu, Y. Chen, M. Tang, S. Zhu, C. Jiang et al., A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: reconsidering its structures. Chem. Commun. 55, 10856 (2019).

    [47] Q. Pan, S. Chen, C. Wu, Z. Zhang, Z. Li et al., Sulfur-rich graphdiyne-containing electrochemical active tetrathiafulvalene for highly efficient lithium storage application. ACS Appl. Mater. Interfaces 11, 46070 (2019).

    [48] Y. Wu, Y. Zhang, Y. Chen, H. Tang, M. Tang et al., Heterochelation boosts sodium storage in π-d conjugated coordination polymers. Energy Environ. Sci. 14, 6514 (2021).

    [49] J. Bergkamp, S. Decurtins, S. Liu, Current advances in fused tetrathiafulvalene donor-acceptor systems. Chem. Soc. Rev. 44, 863 (2015).

    [50] H. Bock, B. Roth, M.V. Lakshmikantham, M.P. Cava, Radical ions 64.1ionization and oxidation of 1,4,5,8-tetrathiatetralin. Phosphorus Sulfur Silicon Relat. Elem. 21, 67 (2006).

    [51] J.L. Segura, N. Martín, New concepts in tetrathiafulvalene chemistry. Angew. Chem. Int. Ed. 40, 1372 (2001).

    [52] Y. Sun, Z. Cui, L. Chen, X. Lu, Y. Wu et al., Aryl-fused tetrathianaphthalene (ttn): synthesis, structures, properties, and cocrystals with fullerenes. RSC Adv. 6, 79978 (2016).

    [53] H. Dai, J. Zou, Y. Gao, Z. Li, C. Zhang et al., A novel conjugated porous polymer based on triazine and imide as cathodes for sodium storage. J. Polym. Sci. 60, 992 (2022).

    [54] S. Xu, H. Dai, S. Zhu, Y. Wu, M. Sun et al., A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. eScience 1, 60 (2021).

    [55] C. Zhang, W. Ma, C. Han, L.-W. Luo, A. Daniyar et al., Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous zn dual-ion batteries. Energy Environ. Sci. 14, 462 (2021).

    [56] G. Dai, Y. He, Z. Niu, P. He, C. Zhang et al., A dual-ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules. Angew. Chem. Int. Ed. 58, 9902 (2019).

    Huichao Dai, Yuan Chen, Yueyue Cao, Manli Fu, Linnan Guan, Guoqun Zhang, Lei Gong, Mi Tang, Kun Fan, Chengliang Wang. Structural Isomers: Small Change with Big Difference in Anion Storage[J]. Nano-Micro Letters, 2024, 16(1): 013
    Download Citation