• Ultrafast Science
  • Vol. 2, Issue 1, 9837892 (2022)
Jinwei Zhang1,2,3,*, Markus Pӧtzlberger4, Qing Wang5, Jonathan Brons2..., Marcus Seidel2, Dominik Bauer6, Dirk Sutter6, Vladimir Pervak4, Alexander Apolonski2,4, Ka Fai Mak2, Vladimir Kalashnikov7, Zhiyi Wei3, Ferenc Krausz2,4 and Oleg Pronin2,8|Show fewer author(s)
Author Affiliations
  • 1School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, China
  • 2Max-Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 GarchingGermany
  • 3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
  • 4Ludwig Maximilian University of Munich, Am Coulombwall 1, 85748 Garching, Germany
  • 5School of Optics and Photonics, Beijing Institute of Technology, 100081 Beijing, China
  • 6TRUMPF Laser GmbH, Aichhalder Straße 39, D-78713 SchrambergGermany
  • 7Institut für Photonik, TU Wien, A-1040 Vienna, Austria
  • 8Helmut-Schmidt-Universität/Universität der Bundeswehr, 22043 Hamburg, Germany
  • show less
    DOI: 10.34133/2022/9837892 Cite this Article
    Jinwei Zhang, Markus Pӧtzlberger, Qing Wang, Jonathan Brons, Marcus Seidel, Dominik Bauer, Dirk Sutter, Vladimir Pervak, Alexander Apolonski, Ka Fai Mak, Vladimir Kalashnikov, Zhiyi Wei, Ferenc Krausz, Oleg Pronin. Distributed Kerr Lens Mode-Locked Yb:YAG Thin-Disk Oscillator[J]. Ultrafast Science, 2022, 2(1): 9837892 Copy Citation Text show less
    References

    [1] F. Krausz, and M. Ivanov, “Attosecond physics,” Reviews of Modern Physics, vol. 81, no. 1, pp. 163–234, 2009

    [2] R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics, vol. 2, no. 4, pp. 219–225, 2008

    [3] D. Zhang, T. Kroh, F. Ritzkowsky, T. Rohwer, M. Fakhari, H. Cankaya, A. L. Calendron, N. H. Matlis, and F. X. Kärtner, “THz-enhanced DC ultrafast electron diffractometer,” Ultrafast Science, vol. 2021, article 9848526, pp. 1–7, 2021

    [4] B. Xue, Y. Tamaru, Y. Fu, H. Yuan, P. Lan, O. D. Mücke, A. Suda, K. Midorikawa, and E. J. Takahashi, “A custom-tailored multi-TW optical electric field for gigawatt soft-x-ray isolated attosecond pulses,” Ultrafast Science, vol. 2021, article 9828026, pp. 1–13, 2021

    [5] A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Applied Physics Letters, vol. 8, no. 7, pp. 174–176, 1966

    [6] E. Ippen, C. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Applied Physics Letters, vol. 21, no. 8, pp. 348–350, 1972

    [7] L. F. Mollenauer, and R. H. Stolen, “The soliton laser,” Optics News, vol. 10, no. 6, pp. 20–21, 1984

    [8] K. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Applied Physics B, vol. 45, no. 3, pp. 191–195, 1988

    [9] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti: sapphire laser,” Optics Letters, vol. 16, no. 1, pp. 42–44, 1991

    [10] K. Tamura, H. Haus, and E. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electronics Letters, vol. 28, no. 24, pp. 2226–2228, 1992

    [11] A. Ankiewicz, and N. Akhmediev Dissipative solitons: from optics to biology and medicine, Springer Verlag, Berlin, vol. 751, Lecture Notes in Physics, 2008

    [12] M. Tokurakawa, A. Shirakawa, K. I. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Optics Letters, vol. 33, no. 12, pp. 1380–1382, 2008

    [13] P. Sévillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a bright fiber laser,” Optics Letters, vol. 39, no. 20, pp. 6001–6004, 2014

    [14] Z. Gao, J. Zhu, J. Wang, Z. Wei, X. Xu, L. Zheng, L. Su, and J. Xu, “Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb:CaYAlO4 laser,” Photonics Research, vol. 3, no. 6, pp. 335–338, 2015

    [15] F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Optics Express, vol. 11, no. 26, pp. 3550–3554, 2003

    [16] S. Uemura, and K. Torizuka, “Sub-40-fs pulses from a diode-pumped Kerr-lens mode-locked Yb-doped yttrium aluminum garnet laser,” Japanese Journal of Applied Physics, vol. 50, no. 1R, article 010201, 2011

    [17] H. A. Haus, “Theory of mode locking with a fast saturable absorber,” Journal of Applied Physics, vol. 46, no. 7, pp. 3049–3058, 1975

    [18] C. Paradis, N. Modsching, V. J. Wittwer, B. Deppe, C. Kränkel, and T. Südmeyer, “Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser,” Optics Express, vol. 25, no. 13, pp. 14918–14925, 2017

    [19] J. Zhang, H. Han, W. Tian, L. Lv, Q. Wang, and Z. Wei, “Diode-pumped 88-fs Kerr-lens mode-locked Yb:Y3Ga5O12 crystal laser,” Optics Express, vol. 21, no. 24, pp. 29867–29873, 2013

    [20] R. Paschotta, and U. Keller, “Passive mode locking with slow saturable absorbers,” Applied Physics B, vol. 73, no. 7, pp. 653–662, 2001

    [21] R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti: sapphire laser,” Optics Letters, vol. 26, no. 6, pp. 373–375, 2001

    [22] Y. Sasatani, H. Hitotsuya, S. Matsubara, M. Inoue, Y. Ishida, N. Shimojo, and S. Kawato, “Ultrashort-pulse generation close to the fluorescence spectrum limit of the gain material in mode-locked Yb: YAG laser with semiconductor saturable absorber mirror,” International Journal of Latest Research in Science and Technology, vol. 1, no. 2, 2012

    [23] C. Radzewicz, G. W. Pearson, and J. S. Krasinski, “Use of ZnS as an additional highly nonlinear intracavity self-focusing element in a Ti: sapphire self-modelocked laser,” Optics Communications, vol. 102, no. 5-6, pp. 464–468, 1993

    [24] S. Kimura, S. Tani, and Y. Kobayashi, “Raman-assisted broadband mode-locked laser,” Scientific Reports, vol. 9, no. 1, pp. 1–6, 2019

    [25] A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Applied Physics B, vol. 58, no. 5, pp. 365–372, 1994

    [26] C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Optics Letters, vol. 39, no. 1, pp. 9–12, 2014

    [27] C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Optics Express, vol. 20, no. 21, pp. 23535–23541, 2012

    [28] J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Optics Letters, vol. 39, no. 22, pp. 6442–6445, 2014

    [29] F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, C. R. Phillips, and U. Keller, “Power scaling of ultrafast oscillators: 350-W average-power sub-picosecond thin-disk laser,” Optics Express, vol. 27, no. 22, pp. 31465–31474, 2019

    [30] J. Fischer, J. Drs, F. Labaye, N. Modsching, V. J. Wittwer, and T. Südmeyer, “Intra-oscillator high harmonic generation in a thin-disk laser operating in the 100-fs regime,” Optics Express, vol. 29, no. 4, pp. 5833–5839, 2021

    [31] J. Fischer, J. Drs, N. Modsching, F. Labaye, V. J. Wittwer, and T. Südmeyer, “69 W average power sub-100-fs Yb: YAG thin-disk laser,” CLEO: Science and Innovations, Optical Society of America, p. SF2M. 4, 2021

    [32] S. Goncharov, K. Fritsch, and O. Pronin, “100 MW thin-disk oscillator,” in 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2021, pp. 1–1

    [33] J. Zhang, J. Brons, N. Lilienfein, E. Fedulova, V. Pervak, D. Bauer, D. Sutter, Z. Wei, A. Apolonski, O. Pronin, and F. Krausz, “260-megahertz, megawatt-level thin-disk oscillator,” Optics Letters, vol. 40, no. 8, pp. 1627–1630, 2015

    [34] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” JOSA B, vol. 8, no. 10, pp. 2068–2076, 1991

    [35] O. Pronin, J. Brons, M. Seidel, E. Fedulova, A. A. Apolonskiy, D. Bauer, D. Sutter, V. Kalashnikov, V. Pervak, and F. Krausz Power and energy scaling of Kerr-lens mode-locked thin-disk oscillators, International Society for Optics and Photonics, vol. 91351, 2014

    [36] S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Physics Reports, vol. 521, no. 4, pp. 135–203, 2012

    [37] M. Poetzlberger, J. Zhang, S. Gröbmeyer, D. Bauer, D. Sutter, J. Brons, and O. Pronin, “Kerr-lens mode-locked thin-disk oscillator with 50% output coupling rate,” Optics Letters, vol. 44, no. 17, pp. 4227–4230, 2019

    [38] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine, vol. 7, no. 4, pp. 502–507, 2001

    [39] C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” Journal of Physics D: Applied Physics, vol. 50, no. 42, article 423001, 2017

    [40] I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nature Photonics, vol. 9, no. 11, pp. 721–724, 2015

    Jinwei Zhang, Markus Pӧtzlberger, Qing Wang, Jonathan Brons, Marcus Seidel, Dominik Bauer, Dirk Sutter, Vladimir Pervak, Alexander Apolonski, Ka Fai Mak, Vladimir Kalashnikov, Zhiyi Wei, Ferenc Krausz, Oleg Pronin. Distributed Kerr Lens Mode-Locked Yb:YAG Thin-Disk Oscillator[J]. Ultrafast Science, 2022, 2(1): 9837892
    Download Citation