[2] R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics, vol. 2, no. 4, pp. 219–225, 2008
[3] D. Zhang, T. Kroh, F. Ritzkowsky, T. Rohwer, M. Fakhari, H. Cankaya, A. L. Calendron, N. H. Matlis, and F. X. Kärtner, “THz-enhanced DC ultrafast electron diffractometer,” Ultrafast Science, vol. 2021, article 9848526, pp. 1–7, 2021
[4] B. Xue, Y. Tamaru, Y. Fu, H. Yuan, P. Lan, O. D. Mücke, A. Suda, K. Midorikawa, and E. J. Takahashi, “A custom-tailored multi-TW optical electric field for gigawatt soft-x-ray isolated attosecond pulses,” Ultrafast Science, vol. 2021, article 9828026, pp. 1–13, 2021
[5] A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Applied Physics Letters, vol. 8, no. 7, pp. 174–176, 1966
[6] E. Ippen, C. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Applied Physics Letters, vol. 21, no. 8, pp. 348–350, 1972
[7] L. F. Mollenauer, and R. H. Stolen, “The soliton laser,” Optics News, vol. 10, no. 6, pp. 20–21, 1984
[8] K. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Applied Physics B, vol. 45, no. 3, pp. 191–195, 1988
[9] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti: sapphire laser,” Optics Letters, vol. 16, no. 1, pp. 42–44, 1991
[10] K. Tamura, H. Haus, and E. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electronics Letters, vol. 28, no. 24, pp. 2226–2228, 1992
[11] A. Ankiewicz, and N. Akhmediev Dissipative solitons: from optics to biology and medicine, Springer Verlag, Berlin, vol. 751, Lecture Notes in Physics, 2008
[12] M. Tokurakawa, A. Shirakawa, K. I. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Optics Letters, vol. 33, no. 12, pp. 1380–1382, 2008
[13] P. Sévillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a bright fiber laser,” Optics Letters, vol. 39, no. 20, pp. 6001–6004, 2014
[14] Z. Gao, J. Zhu, J. Wang, Z. Wei, X. Xu, L. Zheng, L. Su, and J. Xu, “Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb:CaYAlO4 laser,” Photonics Research, vol. 3, no. 6, pp. 335–338, 2015
[15] F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Optics Express, vol. 11, no. 26, pp. 3550–3554, 2003
[16] S. Uemura, and K. Torizuka, “Sub-40-fs pulses from a diode-pumped Kerr-lens mode-locked Yb-doped yttrium aluminum garnet laser,” Japanese Journal of Applied Physics, vol. 50, no. 1R, article 010201, 2011
[17] H. A. Haus, “Theory of mode locking with a fast saturable absorber,” Journal of Applied Physics, vol. 46, no. 7, pp. 3049–3058, 1975
[18] C. Paradis, N. Modsching, V. J. Wittwer, B. Deppe, C. Kränkel, and T. Südmeyer, “Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser,” Optics Express, vol. 25, no. 13, pp. 14918–14925, 2017
[19] J. Zhang, H. Han, W. Tian, L. Lv, Q. Wang, and Z. Wei, “Diode-pumped 88-fs Kerr-lens mode-locked Yb:Y3Ga5O12 crystal laser,” Optics Express, vol. 21, no. 24, pp. 29867–29873, 2013
[20] R. Paschotta, and U. Keller, “Passive mode locking with slow saturable absorbers,” Applied Physics B, vol. 73, no. 7, pp. 653–662, 2001
[21] R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti: sapphire laser,” Optics Letters, vol. 26, no. 6, pp. 373–375, 2001
[22] Y. Sasatani, H. Hitotsuya, S. Matsubara, M. Inoue, Y. Ishida, N. Shimojo, and S. Kawato, “Ultrashort-pulse generation close to the fluorescence spectrum limit of the gain material in mode-locked Yb: YAG laser with semiconductor saturable absorber mirror,” International Journal of Latest Research in Science and Technology, vol. 1, no. 2, 2012
[23] C. Radzewicz, G. W. Pearson, and J. S. Krasinski, “Use of ZnS as an additional highly nonlinear intracavity self-focusing element in a Ti: sapphire self-modelocked laser,” Optics Communications, vol. 102, no. 5-6, pp. 464–468, 1993
[24] S. Kimura, S. Tani, and Y. Kobayashi, “Raman-assisted broadband mode-locked laser,” Scientific Reports, vol. 9, no. 1, pp. 1–6, 2019
[25] A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Applied Physics B, vol. 58, no. 5, pp. 365–372, 1994
[26] C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Optics Letters, vol. 39, no. 1, pp. 9–12, 2014
[27] C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Optics Express, vol. 20, no. 21, pp. 23535–23541, 2012
[28] J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Optics Letters, vol. 39, no. 22, pp. 6442–6445, 2014
[29] F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, C. R. Phillips, and U. Keller, “Power scaling of ultrafast oscillators: 350-W average-power sub-picosecond thin-disk laser,” Optics Express, vol. 27, no. 22, pp. 31465–31474, 2019
[30] J. Fischer, J. Drs, F. Labaye, N. Modsching, V. J. Wittwer, and T. Südmeyer, “Intra-oscillator high harmonic generation in a thin-disk laser operating in the 100-fs regime,” Optics Express, vol. 29, no. 4, pp. 5833–5839, 2021
[31] J. Fischer, J. Drs, N. Modsching, F. Labaye, V. J. Wittwer, and T. Südmeyer, “69 W average power sub-100-fs Yb: YAG thin-disk laser,” CLEO: Science and Innovations, Optical Society of America, p. SF2M. 4, 2021
[32] S. Goncharov, K. Fritsch, and O. Pronin, “100 MW thin-disk oscillator,” in 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2021, pp. 1–1
[33] J. Zhang, J. Brons, N. Lilienfein, E. Fedulova, V. Pervak, D. Bauer, D. Sutter, Z. Wei, A. Apolonski, O. Pronin, and F. Krausz, “260-megahertz, megawatt-level thin-disk oscillator,” Optics Letters, vol. 40, no. 8, pp. 1627–1630, 2015
[34] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” JOSA B, vol. 8, no. 10, pp. 2068–2076, 1991
[35] O. Pronin, J. Brons, M. Seidel, E. Fedulova, A. A. Apolonskiy, D. Bauer, D. Sutter, V. Kalashnikov, V. Pervak, and F. Krausz Power and energy scaling of Kerr-lens mode-locked thin-disk oscillators, International Society for Optics and Photonics, vol. 91351, 2014
[36] S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Physics Reports, vol. 521, no. 4, pp. 135–203, 2012
[37] M. Poetzlberger, J. Zhang, S. Gröbmeyer, D. Bauer, D. Sutter, J. Brons, and O. Pronin, “Kerr-lens mode-locked thin-disk oscillator with 50% output coupling rate,” Optics Letters, vol. 44, no. 17, pp. 4227–4230, 2019
[38] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine, vol. 7, no. 4, pp. 502–507, 2001
[39] C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” Journal of Physics D: Applied Physics, vol. 50, no. 42, article 423001, 2017
[40] I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nature Photonics, vol. 9, no. 11, pp. 721–724, 2015