• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1200002 (2023)
Di Wu1, Shuhui Gao1,*, Ning Zhang2,**, Yifan Lu1..., Fei Xie1, Hao Zhang1, Sanyuan Ju1, Haoran Zeng1 and Chengming Wang3|Show fewer author(s)
Author Affiliations
  • 1School of Investigation, People's Public Security University of China, Beijing 100038, China
  • 2Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
  • 3JINSP Co., Ltd., Beijing 100038, China
  • show less
    DOI: 10.3788/LOP220944 Cite this Article Set citation alerts
    Di Wu, Shuhui Gao, Ning Zhang, Yifan Lu, Fei Xie, Hao Zhang, Sanyuan Ju, Haoran Zeng, Chengming Wang. Research Progresses and Application Prospects of Optical Coherence Tomography in Forensic Science[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1200002 Copy Citation Text show less
    References

    [1] Alsayed E Z, Hariri I, Sadr A et al. Optical coherence tomography for evaluation of enamel and protective coatings[J]. Dental Materials Journal, 34, 98-107(2015).

    [2] Swanson E, Izatt A J, Bee M K et al. Optical coherence tomography[C], 656-657(1991).

    [3] Zhang N. Study of the endoscopic spectral-domain optical coherence tomography[D](2014).

    [4] Qian Y Y, Liu L, Shi Y H et al. Assessment of anterior chamber by ultrasound biomicroscopy and anterior segment optical coherence tomography in patients with inflammatory glaucoma[J]. The Journal of International Medical Research, 47, 5950-5956(2019).

    [5] Del-Valle M, Lins E, Ana P. Assessment of simulated osteoporosis in alveolar bone using optical coherence tomography[J]. Journal of Biophotonics, 12, e201900171(2019).

    [6] Hua R, Ning H. Using optical coherence tomography angiography to guide the treatment of pathological myopic patients with submacular hemorrhage[J]. Photodiagnosis and Photodynamic Therapy, 28, 105-109(2019).

    [7] Sciarrone D F G, Mclaughlin R A, Argarini R et al. Visualising and quantifying microvascular structure and function in patients with heart failure using optical coherence tomography[J]. The Journal of Physiology, 600(2022).

    [8] Leitgeb R A, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).

    [9] Fercher A F. Optical coherence tomography-development, principles, applications[J]. Zeitschrift Für Medizinische Physik, 20, 251-276(2010).

    [10] Wojtkowski M, Srinivasan V J, Ko T H et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Optics Express, 12, 2404-2422(2004).

    [11] Qi B, Himmer A P, Gordon L M et al. Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror[J]. Optics Communications, 232, 123-128(2004).

    [12] Choma M A, Sarunic M V, Yang C et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).

    [13] Hillman T R, Sampson D D. The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography[J]. Optics Express, 13, 1860-1874(2005).

    [14] Dubey S K, Mehta D S, Anand A et al. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography[J]. Journal of Optics A: Pure and Applied Optics, 10, 015307(2008).

    [15] Dubey S K, Anna T, Shakher C et al. Fingerprint detection using full-field swept-source optical coherence tomography[J]. Applied Physics Letters, 91, 181106(2007).

    [16] Liu K K, Meng L, Zhang N et al. Visualization of latent fingerprints beneath opaque electrical tapes by optical coherence tomography[J]. Proceedings of SPIE, 10611, 106110U(2018).

    [17] Zhang N, Wang C M, Sun Z W et al. Detection of latent fingerprint hidden beneath adhesive tape by optical coherence tomography[J]. Forensic Science International, 287, 81-87(2018).

    [18] Wu D, Lu Y F, Zeng H R et al. Optical coherence tomography based method for developing overlapped fingermarks on the multi-layer adhesive tape[J]. Laser & Optoelectronics Progress, 60, 0611002(2023).

    [19] Zhang N, Wang C M, Li Z G et al. Separation of overlapping fingerprints in multilayered carrier using optical coherence tomography[J]. Journal of Forensic Dentification, 69, 356-366(2019).

    [20] Cheng Y Z, Larin K V. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis[J]. Applied Optics, 45, 9238-9245(2006).

    [21] Sven M, Ralph B, Edmund K. Fingerprint fake detection by optical coherence tomography[J]. Proceedings of SPIE, 8571, 85713L(2013).

    [22] Wang K C, Li J H, Fang W H. Application of optical coherence tomography technology in fingerprint recognition[J]. Spectroscopy and Spectral Analysis, 40, 317-318(2020).

    [23] Bossen A, Lehmann R, Meier C. Internal fingerprint identification with optical coherence tomography[J]. IEEE Photonics Technology Letters, 22, 507-509(2010).

    [24] Liu G J, Chen Z P. Capturing the vital vascular fingerprint with optical coherence tomography[J]. Applied Optics, 52, 5473-5477(2013).

    [25] Zam A, Dsouza R, Subhash H M et al. Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting[J]. Journal of Biophotonics, 6, 663-667(2013).

    [26] He C G. The applied research of level 3 features in fingerprint identification[D](2018).

    [27] Sun S, Guo Z H. Sweat glands extraction in optical coherence tomography fingerprints[C], 579-584(2017).

    [28] Raja K B, Raghavendra R, Auksorius E et al. Subsurface and layer intertwined template protection using inherent properties of full-field optical coherence tomography fingerprint imaging[C], 2397-2404(2019).

    [29] Ding B J, Wang H X, Chen P et al. Surface and internal fingerprint reconstruction from optical coherence tomography through convolutional neural network[J]. IEEE Transactions on Information Forensics and Security, 16, 685-700(2021).

    [30] Ma T, Huang J, Wang J F. Study on the pupal morphogenesis of Chrysomya Rufifacies (Macquart) (Diptera: Calliphoridae) for postmortem interval estimation[J]. Forensic Science International, 253, 88-93(2015).

    [31] Amendt J, Richards C S, Campobasso C P et al. Forensic entomology: applications and limitations[J]. Forensic Science, Medicine, and Pathology, 7, 379-392(2011).

    [32] Arnott S, Turner B. Post-feeding larval behaviour in the blowfly, Calliphora Vicina: effects on post-mortem interval estimates[J]. Forensic Science International, 177, 162-167(2008).

    [33] Amendt J, Campobasso C P, Gaudry E et al. Best practice in forensic entomology: standards and guidelines[J]. International Journal of Legal Medicine, 121, 90-104(2007).

    [34] Voss S C, Magni P, Dadour I et al. Reflectance-based determination of age and species of blowfly puparia[J]. International Journal of Legal Medicine, 131, 263-274(2017).

    [35] Boehme P, Spahn P, Amendt J et al. The analysis of temporal gene expression to estimate the age of forensically important blow fly pupae: results from three blind studies[J]. International Journal of Legal Medicine, 128, 565-573(2014).

    [36] Davies K, Harvey M L. Internal morphological analysis for age estimation of blow fly pupae (Diptera: Calliphoridae) in postmortem interval estimation[J]. Journal of Forensic Sciences, 58, 79-84(2013).

    [37] Frere B, Suchaud F, Bernier G et al. GC-MS analysis of cuticular lipids in recent and older scavenger insect puparia[J]. Analytical and Bioanalytical Chemistry, 406, 1081-1088(2014).

    [38] Moore H E, Adam C D, Drijfhout F P. Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the postmortem interval[J]. Journal of Forensic Sciences, 58, 404-412(2013).

    [39] Brown K, Harvey M. Optical coherence tomography: age estimation of Calliphora Vicina pupae in vivo?[J]. Forensic Science International, 242, 157-161(2014).

    [40] Choi K S, Wijesinghe R E, Lee C et al. In vivo observation of metamorphosis of Plodia interpunctella Hübner using three-dimensional optical coherence tomography[J]. Entomological Research, 47, 256-262(2017).

    [41] Ravichandran N K, Wijesinghe R E, Lee S Y et al. Non-destructive analysis of the internal anatomical structures of mosquito specimens using optical coherence tomography[J]. Sensors, 17, 1897(2017).

    [42] Pinheiro J. Introduction to forensic medicine and pathology[M]. Schmitt A, Cunha E, Pinheiro J. Forensic anthropology and medicine, 13-37(2007).

    [43] Koehler K, Sehner S, Riemer M et al. Post-mortem chemical excitability of the iris should not be used for forensic death time diagnosis[J]. International Journal of Legal Medicine, 132, 1693-1697(2018).

    [44] Balci Y, Basmak H, Kocaturk B K et al. The importance of measuring intraocular pressure using a tonometer in order to estimate the postmortem interval[J]. The American Journal of Forensic Medicine and Pathology, 31, 151-155(2010).

    [45] McNabb R P, Tian J, Farsiu S et al. Retinal imaging in human autopsy eyes using a custom optical coherence tomography periscope[J]. Biomedical Optics Express, 8, 4152-4159(2017).

    [46] Napoli P E, Nioi M, Gabiati L et al. Repeatability and reproducibility of post-mortem central corneal thickness measurements using a portable optical coherence tomography system in humans: a prospective multicenter study[J]. Scientific Reports, 10, 14508(2020).

    [47] Nioi M, Napoli P E, Demontis R et al. Morphological analysis of corneal findings modifications after death: a preliminary OCT study on an animal model[J]. Experimental Eye Research, 169, 20-27(2018).

    [48] Napoli P E, Nioi M, D’Aloja E et al. Post-mortem corneal thickness measurements with a portable optical coherence tomography system: a reliability study[J]. Scientific Reports, 6, 30428(2016).

    [49] Nioi M, Napoli P E, Demontis R et al. Postmortem ocular findings in the optical coherence tomography era: a proof of concept study based on six forensic cases[J]. Diagnostics, 11, 413(2021).

    [50] Nioi M, Napoli P E, Paribello F et al. Use of optical coherence tomography on detection of postmortem ocular findings: pilot data from two cases[J]. Journal of Integrated OMICS, 8, 5-7(2018).

    [51] Roberts I S, Benamore R E, Benbow E W et al. Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study[J]. The Lancet, 379, 136-142(2012).

    [52] Li Y, Wei Z B, Ding Y H et al. Application of intravascular imaging in forensic autopsy[J]. Journal of Forensic Medicine, 35, 332-336(2019).

    [53] Brezinski M E, Tearney G J, Bouma B E et al. Imaging of coronary artery microstructure (in vitro) with optical coherence tomography[J]. The American Journal of Cardiology, 77, 92-93(1996).

    [54] Kume T, Akasaka T, Kawamoto T et al. Assessment of coronary arterial thrombus by optical coherence tomography[J]. The American Journal of Cardiology, 97, 1713-1717(2006).

    [55] Prati F, Guagliumi G, Mintz G S et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures[J]. European Heart Journal, 33, 2513-2520(2012).

    [56] Adlam D, Joseph S, Robinson C et al. Coronary optical coherence tomography: minimally invasive virtual histology as part of targeted post-mortem computed tomography angiography[J]. International Journal of Legal Medicine, 127, 991-996(2013).

    [57] Wang C M. Ultrahigh speed OCT and its applications in clinical and forensic study[D](2018).

    [58] Zhang N, Jiang P, Wang W X et al. Initial study for the determination of the sequence of intersecting lines between gel pens and seals by optical coherence tomography[J]. Journal of Forensic Sciences, 65, 2071-2079(2020).

    [59] Neto O N, Sarkis J E S, Siqueira A N et al. A new method for measuring pen pressure in forensic handwriting analysis-a proof of concept study[J]. The Analyst, 146, 1973-1980(2021).

    [60] Baechler S, Margot P. Understanding crime and fostering security using forensic science: the example of turning false identity documents into forensic intelligence[J]. Security Journal, 29, 618-639(2016).

    [61] Choi W J, Min G H, Lee B H et al. Counterfeit detection using characterization of safety feature on banknote with full-field optical coherence tomography[J]. Journal of the Optical Society of Korea, 14, 316-320(2010).

    [62] Marques M J, Green R, King R et al. Sub-surface characterisation of latest-generation identification documents using optical coherence tomography[J]. Science & Justice, 61, 119-129(2021).

    [63] Moran T C, Kaye A D, Rao A et al. The roles of X rays and other types of electromagnetic radiation in evaluating paintings for forgery and restoration[J]. Journal of Forensic Radiology and Imaging, 5, 38-46(2016).

    [64] Bisbing R E, Wolner M F. Microscopical discrimination of twins’ head hair[J]. Journal of Forensic Sciences, 29, 780-786(1984).

    [65] Choi W J, Pi L Q, Min G et al. Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography[J]. Journal of Biomedical Optics, 17, 036010(2012).

    [66] Wang C M, Xie L C, Xu X J et al. Preliminary analysis of facial hair follicle distribution for forensic identification using OCT[J]. Proceedings of SPIE, 10497, 1049708(2018).

    [67] Laan N, Bremmer R H, Aalders M C G et al. Volume determination of fresh and dried bloodstains by means of optical coherence tomography[J]. Journal of Forensic Sciences, 59, 34-41(2014).

    [68] Li Y S. Performance evaluation of a Chinese norinco QSZ-92 registered ballistic database using the Evofindersystem[D](2019).

    [69] Grulkowski I, Liu J J, Potsaid B et al. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source[J]. Optics Letters, 38, 673-675(2013).

    [70] Liu N N, Xu X J, Zhang N et al. Studies on optical coherence tomographic images from nondestructive paint chips of motor vehicles[J]. Forensic Science and Technology, 41, 367-371(2016).

    [71] Liu N N. Examination of automative paint by optical coherence tomography[D](2017).

    [72] Zhang N, Wang C M, Sun Z W et al. Characterization of automotive paint by optical coherence tomography[J]. Forensic Science International, 266, 239-244(2016).

    [73] Wang C M, Zhang N, Sun Z W et al. Recovering hidden sub-layers of repainted automotive paint by 3D optical coherence tomography[J]. Australian Journal of Forensic Sciences, 51, 331-339(2019).

    [74] Luo R B[M]. Development of difficult fingerprints(2005).

    [75] Liu K K, Meng L, Zhang N et al. Characterization of electrical tapes by optical coherence tomography[J]. Laser & Optoelectronics Progress, 55, 011101(2018).

    [76] Klein T, Wieser W, Eigenwillig C M et al. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser[J]. Optics Express, 19, 3044-3062(2011).

    [77] Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 4, 95-105(1999).

    Di Wu, Shuhui Gao, Ning Zhang, Yifan Lu, Fei Xie, Hao Zhang, Sanyuan Ju, Haoran Zeng, Chengming Wang. Research Progresses and Application Prospects of Optical Coherence Tomography in Forensic Science[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1200002
    Download Citation