[1] Alsayed E Z, Hariri I, Sadr A et al. Optical coherence tomography for evaluation of enamel and protective coatings[J]. Dental Materials Journal, 34, 98-107(2015).
[2] Swanson E, Izatt A J, Bee M K et al. Optical coherence tomography[C], 656-657(1991).
[3] Zhang N. Study of the endoscopic spectral-domain optical coherence tomography[D](2014).
[4] Qian Y Y, Liu L, Shi Y H et al. Assessment of anterior chamber by ultrasound biomicroscopy and anterior segment optical coherence tomography in patients with inflammatory glaucoma[J]. The Journal of International Medical Research, 47, 5950-5956(2019).
[5] Del-Valle M, Lins E, Ana P. Assessment of simulated osteoporosis in alveolar bone using optical coherence tomography[J]. Journal of Biophotonics, 12, e201900171(2019).
[6] Hua R, Ning H. Using optical coherence tomography angiography to guide the treatment of pathological myopic patients with submacular hemorrhage[J]. Photodiagnosis and Photodynamic Therapy, 28, 105-109(2019).
[7] Sciarrone D F G, Mclaughlin R A, Argarini R et al. Visualising and quantifying microvascular structure and function in patients with heart failure using optical coherence tomography[J]. The Journal of Physiology, 600(2022).
[8] Leitgeb R A, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).
[9] Fercher A F. Optical coherence tomography-development, principles, applications[J]. Zeitschrift Für Medizinische Physik, 20, 251-276(2010).
[10] Wojtkowski M, Srinivasan V J, Ko T H et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Optics Express, 12, 2404-2422(2004).
[11] Qi B, Himmer A P, Gordon L M et al. Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror[J]. Optics Communications, 232, 123-128(2004).
[12] Choma M A, Sarunic M V, Yang C et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).
[13] Hillman T R, Sampson D D. The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography[J]. Optics Express, 13, 1860-1874(2005).
[14] Dubey S K, Mehta D S, Anand A et al. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography[J]. Journal of Optics A: Pure and Applied Optics, 10, 015307(2008).
[15] Dubey S K, Anna T, Shakher C et al. Fingerprint detection using full-field swept-source optical coherence tomography[J]. Applied Physics Letters, 91, 181106(2007).
[16] Liu K K, Meng L, Zhang N et al. Visualization of latent fingerprints beneath opaque electrical tapes by optical coherence tomography[J]. Proceedings of SPIE, 10611, 106110U(2018).
[17] Zhang N, Wang C M, Sun Z W et al. Detection of latent fingerprint hidden beneath adhesive tape by optical coherence tomography[J]. Forensic Science International, 287, 81-87(2018).
[18] Wu D, Lu Y F, Zeng H R et al. Optical coherence tomography based method for developing overlapped fingermarks on the multi-layer adhesive tape[J]. Laser & Optoelectronics Progress, 60, 0611002(2023).
[19] Zhang N, Wang C M, Li Z G et al. Separation of overlapping fingerprints in multilayered carrier using optical coherence tomography[J]. Journal of Forensic Dentification, 69, 356-366(2019).
[20] Cheng Y Z, Larin K V. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis[J]. Applied Optics, 45, 9238-9245(2006).
[21] Sven M, Ralph B, Edmund K. Fingerprint fake detection by optical coherence tomography[J]. Proceedings of SPIE, 8571, 85713L(2013).
[22] Wang K C, Li J H, Fang W H. Application of optical coherence tomography technology in fingerprint recognition[J]. Spectroscopy and Spectral Analysis, 40, 317-318(2020).
[23] Bossen A, Lehmann R, Meier C. Internal fingerprint identification with optical coherence tomography[J]. IEEE Photonics Technology Letters, 22, 507-509(2010).
[24] Liu G J, Chen Z P. Capturing the vital vascular fingerprint with optical coherence tomography[J]. Applied Optics, 52, 5473-5477(2013).
[25] Zam A, Dsouza R, Subhash H M et al. Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting[J]. Journal of Biophotonics, 6, 663-667(2013).
[26] He C G. The applied research of level 3 features in fingerprint identification[D](2018).
[27] Sun S, Guo Z H. Sweat glands extraction in optical coherence tomography fingerprints[C], 579-584(2017).
[28] Raja K B, Raghavendra R, Auksorius E et al. Subsurface and layer intertwined template protection using inherent properties of full-field optical coherence tomography fingerprint imaging[C], 2397-2404(2019).
[29] Ding B J, Wang H X, Chen P et al. Surface and internal fingerprint reconstruction from optical coherence tomography through convolutional neural network[J]. IEEE Transactions on Information Forensics and Security, 16, 685-700(2021).
[30] Ma T, Huang J, Wang J F. Study on the pupal morphogenesis of Chrysomya Rufifacies (Macquart) (Diptera: Calliphoridae) for postmortem interval estimation[J]. Forensic Science International, 253, 88-93(2015).
[31] Amendt J, Richards C S, Campobasso C P et al. Forensic entomology: applications and limitations[J]. Forensic Science, Medicine, and Pathology, 7, 379-392(2011).
[32] Arnott S, Turner B. Post-feeding larval behaviour in the blowfly, Calliphora Vicina: effects on post-mortem interval estimates[J]. Forensic Science International, 177, 162-167(2008).
[33] Amendt J, Campobasso C P, Gaudry E et al. Best practice in forensic entomology: standards and guidelines[J]. International Journal of Legal Medicine, 121, 90-104(2007).
[34] Voss S C, Magni P, Dadour I et al. Reflectance-based determination of age and species of blowfly puparia[J]. International Journal of Legal Medicine, 131, 263-274(2017).
[35] Boehme P, Spahn P, Amendt J et al. The analysis of temporal gene expression to estimate the age of forensically important blow fly pupae: results from three blind studies[J]. International Journal of Legal Medicine, 128, 565-573(2014).
[36] Davies K, Harvey M L. Internal morphological analysis for age estimation of blow fly pupae (Diptera: Calliphoridae) in postmortem interval estimation[J]. Journal of Forensic Sciences, 58, 79-84(2013).
[37] Frere B, Suchaud F, Bernier G et al. GC-MS analysis of cuticular lipids in recent and older scavenger insect puparia[J]. Analytical and Bioanalytical Chemistry, 406, 1081-1088(2014).
[38] Moore H E, Adam C D, Drijfhout F P. Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the postmortem interval[J]. Journal of Forensic Sciences, 58, 404-412(2013).
[39] Brown K, Harvey M. Optical coherence tomography: age estimation of Calliphora Vicina pupae in vivo?[J]. Forensic Science International, 242, 157-161(2014).
[40] Choi K S, Wijesinghe R E, Lee C et al. In vivo observation of metamorphosis of Plodia interpunctella Hübner using three-dimensional optical coherence tomography[J]. Entomological Research, 47, 256-262(2017).
[41] Ravichandran N K, Wijesinghe R E, Lee S Y et al. Non-destructive analysis of the internal anatomical structures of mosquito specimens using optical coherence tomography[J]. Sensors, 17, 1897(2017).
[42] Pinheiro J. Introduction to forensic medicine and pathology[M]. Schmitt A, Cunha E, Pinheiro J. Forensic anthropology and medicine, 13-37(2007).
[43] Koehler K, Sehner S, Riemer M et al. Post-mortem chemical excitability of the iris should not be used for forensic death time diagnosis[J]. International Journal of Legal Medicine, 132, 1693-1697(2018).
[44] Balci Y, Basmak H, Kocaturk B K et al. The importance of measuring intraocular pressure using a tonometer in order to estimate the postmortem interval[J]. The American Journal of Forensic Medicine and Pathology, 31, 151-155(2010).
[45] McNabb R P, Tian J, Farsiu S et al. Retinal imaging in human autopsy eyes using a custom optical coherence tomography periscope[J]. Biomedical Optics Express, 8, 4152-4159(2017).
[46] Napoli P E, Nioi M, Gabiati L et al. Repeatability and reproducibility of post-mortem central corneal thickness measurements using a portable optical coherence tomography system in humans: a prospective multicenter study[J]. Scientific Reports, 10, 14508(2020).
[47] Nioi M, Napoli P E, Demontis R et al. Morphological analysis of corneal findings modifications after death: a preliminary OCT study on an animal model[J]. Experimental Eye Research, 169, 20-27(2018).
[48] Napoli P E, Nioi M, D’Aloja E et al. Post-mortem corneal thickness measurements with a portable optical coherence tomography system: a reliability study[J]. Scientific Reports, 6, 30428(2016).
[49] Nioi M, Napoli P E, Demontis R et al. Postmortem ocular findings in the optical coherence tomography era: a proof of concept study based on six forensic cases[J]. Diagnostics, 11, 413(2021).
[50] Nioi M, Napoli P E, Paribello F et al. Use of optical coherence tomography on detection of postmortem ocular findings: pilot data from two cases[J]. Journal of Integrated OMICS, 8, 5-7(2018).
[51] Roberts I S, Benamore R E, Benbow E W et al. Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study[J]. The Lancet, 379, 136-142(2012).
[52] Li Y, Wei Z B, Ding Y H et al. Application of intravascular imaging in forensic autopsy[J]. Journal of Forensic Medicine, 35, 332-336(2019).
[53] Brezinski M E, Tearney G J, Bouma B E et al. Imaging of coronary artery microstructure (in vitro) with optical coherence tomography[J]. The American Journal of Cardiology, 77, 92-93(1996).
[54] Kume T, Akasaka T, Kawamoto T et al. Assessment of coronary arterial thrombus by optical coherence tomography[J]. The American Journal of Cardiology, 97, 1713-1717(2006).
[55] Prati F, Guagliumi G, Mintz G S et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures[J]. European Heart Journal, 33, 2513-2520(2012).
[56] Adlam D, Joseph S, Robinson C et al. Coronary optical coherence tomography: minimally invasive virtual histology as part of targeted post-mortem computed tomography angiography[J]. International Journal of Legal Medicine, 127, 991-996(2013).
[57] Wang C M. Ultrahigh speed OCT and its applications in clinical and forensic study[D](2018).
[58] Zhang N, Jiang P, Wang W X et al. Initial study for the determination of the sequence of intersecting lines between gel pens and seals by optical coherence tomography[J]. Journal of Forensic Sciences, 65, 2071-2079(2020).
[59] Neto O N, Sarkis J E S, Siqueira A N et al. A new method for measuring pen pressure in forensic handwriting analysis-a proof of concept study[J]. The Analyst, 146, 1973-1980(2021).
[60] Baechler S, Margot P. Understanding crime and fostering security using forensic science: the example of turning false identity documents into forensic intelligence[J]. Security Journal, 29, 618-639(2016).
[61] Choi W J, Min G H, Lee B H et al. Counterfeit detection using characterization of safety feature on banknote with full-field optical coherence tomography[J]. Journal of the Optical Society of Korea, 14, 316-320(2010).
[62] Marques M J, Green R, King R et al. Sub-surface characterisation of latest-generation identification documents using optical coherence tomography[J]. Science & Justice, 61, 119-129(2021).
[63] Moran T C, Kaye A D, Rao A et al. The roles of X rays and other types of electromagnetic radiation in evaluating paintings for forgery and restoration[J]. Journal of Forensic Radiology and Imaging, 5, 38-46(2016).
[64] Bisbing R E, Wolner M F. Microscopical discrimination of twins’ head hair[J]. Journal of Forensic Sciences, 29, 780-786(1984).
[65] Choi W J, Pi L Q, Min G et al. Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography[J]. Journal of Biomedical Optics, 17, 036010(2012).
[66] Wang C M, Xie L C, Xu X J et al. Preliminary analysis of facial hair follicle distribution for forensic identification using OCT[J]. Proceedings of SPIE, 10497, 1049708(2018).
[67] Laan N, Bremmer R H, Aalders M C G et al. Volume determination of fresh and dried bloodstains by means of optical coherence tomography[J]. Journal of Forensic Sciences, 59, 34-41(2014).
[68] Li Y S. Performance evaluation of a Chinese norinco QSZ-92 registered ballistic database using the Evofindersystem[D](2019).
[69] Grulkowski I, Liu J J, Potsaid B et al. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source[J]. Optics Letters, 38, 673-675(2013).
[70] Liu N N, Xu X J, Zhang N et al. Studies on optical coherence tomographic images from nondestructive paint chips of motor vehicles[J]. Forensic Science and Technology, 41, 367-371(2016).
[71] Liu N N. Examination of automative paint by optical coherence tomography[D](2017).
[72] Zhang N, Wang C M, Sun Z W et al. Characterization of automotive paint by optical coherence tomography[J]. Forensic Science International, 266, 239-244(2016).
[73] Wang C M, Zhang N, Sun Z W et al. Recovering hidden sub-layers of repainted automotive paint by 3D optical coherence tomography[J]. Australian Journal of Forensic Sciences, 51, 331-339(2019).
[74] Luo R B[M]. Development of difficult fingerprints(2005).
[75] Liu K K, Meng L, Zhang N et al. Characterization of electrical tapes by optical coherence tomography[J]. Laser & Optoelectronics Progress, 55, 011101(2018).
[76] Klein T, Wieser W, Eigenwillig C M et al. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser[J]. Optics Express, 19, 3044-3062(2011).
[77] Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J]. Journal of Biomedical Optics, 4, 95-105(1999).