• Journal of Advanced Dielectrics
  • Vol. 14, Issue 4, 2440019 (2024)
Fei Wang1,2, Jia Yang1, Qing Yang1, Ning Chen2..., Xinji Yang2, Mingyue Mo2, Jie Xing2, Zhi Tan2, Zhongqing Tian1, Fancheng Meng1,*, Yuheng Guo3, Huixing Lin4 and Jianguo Zhu2,**|Show fewer author(s)
Author Affiliations
  • 1College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
  • 2College of Materials Science and Engineering, Sichuan University, Chengdu 610064, P. R. China
  • 3School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, P. R. China
  • 4Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, P. R. China
  • show less
    DOI: 10.1142/S2010135X24400198 Cite this Article
    Fei Wang, Jia Yang, Qing Yang, Ning Chen, Xinji Yang, Mingyue Mo, Jie Xing, Zhi Tan, Zhongqing Tian, Fancheng Meng, Yuheng Guo, Huixing Lin, Jianguo Zhu. Enhanced electrical properties and Vickers hardness of calcium bismuth niobate ceramics by W/Co substituted at B-site[J]. Journal of Advanced Dielectrics, 2024, 14(4): 2440019 Copy Citation Text show less
    References

    [1] R. C. Turner, P. A. Fuierer, R. E. Newnham, T. R. Shrout. Materials for high temperature acoustic and vibration sensors: A review. Appl. Acoust., 41, 299(1994).

    [2] S. J. Zhang, F. P. Yu, D. J. Green. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 94, 3153(2011).

    [3] Y. G. Li, Z. Y. Zhou, R. H. Liang, B. T. Gao, Z. Y. Zhou, X. L. Dong. A simple Bi3+ self-doping strategy constructing pseudo-tetragonal phase boundary to enhance electrical properties in CaBi2Nb2O9 high-temperature piezoceramics. J. Eur. Ceram. Soc., 42, 2772(2022).

    [4] J.-S. Zhou, K. Wang, F.-Z. Yao, T. Zheng, J. G. Wu, D. Q. Xiao, J. G. Zhu, J.-F. Li. Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J. Mater. Chem. C, 3, 8780(2015).

    [5] S. Cheng, B.-P. Zhang, L. Zhao, K.-K. Wang. Enhanced insulating and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: Analysis of Bi3+ volatilization and phase structures. J. Mater. Chem. C, 6, 3982(2018).

    [6] H. Tao, H. J. Wu, Y. Liu, Y. Zhang, J. G. Wu, F. Li, X. Lyu, C. L. Zhao, D. Q. Xiao, J. G. Zhu, S. J. Pennycook. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc., 141, 13987(2019).

    [7] D. W. Wang, Z. M. Fan, G. H. Rao, G. Wang, Y. Liu, C. L. Yuan, T. Ma, D. J. Li, X. L. Tan, Z. L. Lu, A. Feteira, S. Y. Liu, C. R. Zhou, S. J. Zhang. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy, 76, 104944(2020).

    [8] S.-H. Go, D.-S. Kim, J.-M. Eum, H.-S. Shin, S.-J. Chae, S.-W. Kim, E.-J. Kim, J.-U. Woo, S. Nahm. Excellent piezoelectric properties of (K, Na)(Nb, Sb)O3-CaZrO3-(Bi, Ag)ZrO3 lead-free piezoceramics. J. Alloys Compd., 889, 161817(2021).

    [9] H. J. Li, L. X. Xie, Z. Tan, J. Xing, X. Li, H. Chen, F. Wang, Y. Cheng, M. J. Tang, J. G. Zhu. Utilization of nonstoichiometric Nb5+ to optimize comprehensive electrical properties of KNN-based ceramics. Inorg. Chem., 61, 18660(2022).

    [10] Y. Chen, L. F. Li, Z. Zhou, Y. Y. Wang, Q. Chen, Q. Y. Wang. La2O3-modified BiYbO3–Pb(Zr,Ti)O3 ternary piezoelectric ceramics with enhanced electrical properties and thermal depolarization temperature. J. Adv. Ceram., 12, 1593(2023).

    [11] K. Cai, F. Jiang, P. Y. Deng, J. T. Ma, D. Guo, J. Ihlefeld. Enhanced ferroelectric phase stability and high temperature piezoelectricity in PN ceramics via multisite co-doping. J. Am. Ceram. Soc., 98, 3165(2015).

    [12] R. R. Fang, Z. Y. Zhou, R. H. Liang, X. L. Dong. Effects of CuO addition on the sinterability and electric properties in PbNb2O6-based ceramics. Ceram. Int., 46, 23505(2020).

    [13] R. R. Fang, Z. Y. Zhou, R. H. Liang, X. L. Dong. Significantly improved dielectric and piezoelectric properties by defects in PbNb2O6-based piezoceramics. Ceram. Int., 47, 26942(2021).

    [14] C. C. Li, H. C. Xiang, J. W. Chen, L. Fang. Phase transition, dielectric relaxation and piezoelectric properties of bismuth doped La2Ti2O7 ceramics. Ceram. Int., 42, 11453(2016).

    [15] T. D. Sparks, P. A. Fuierer, D. R. Clarke. Anisotropic thermal diffusivity and conductivity of La-doped strontium niobate Sr2Nb2O7. J. Am. Ceram. Soc., 93, 1136(2010).

    [16] Y. Y. Li, M. J. Xu, X. X. Yan, C. Addiego, L. M. Jiang, H. Wang, J. G. Zhu. Origin of the enhanced piezoelectricity of vanadium-doped La2Ti2O7 ceramics. J. Phys. Chem. C, 125, 26180(2021).

    [17] B. Aurivillius. Mixed bismuth oxides with layer lattices. 1. The structure type of CaNb2Bi2O9. Acta Crystallogr., 1, 463(1949).

    [18] L. Korzunova. PmP118. Piezoelectric ceramics for high-temperature transducers. Ferroelectrics, 134, 175(1992).

    [19] R. Aoyagi, H. Takeda, S. Okamura, T. Shiosaki. Synthesis and electrical properties of sodium bismuth niobate Na0.5Bi2.5Nb2O9. Mater. Res. Bull., 38, 25(2003).

    [20] H. X. Yan, H. T. Zhang, R. U. Ubic, M. J. Reece, J. Liu, Z. J. Shen, Z. Zhang. A lead-free high-Curie-point ferroelectric ceramic, CaBi2Nb2O9. Adv. Mater., 17, 1261(2005).

    [21] H. X. Yan, H. T. Zhang, M. J. Reece, X. L. Dong. Thermal depoling of high Curie point Aurivillius phase ferroelectric ceramics. Appl. Phys. Lett., 87, 082911(2005).

    [22] T. Tokusu, H. Miyabayashi, Y. Hiruma, H. Nagata, T. Takenaka. Electrical properties and piezoelectric properties of CaBi2Ta2O9-based ceramics. Key Eng. Mater., 421-422(2009).

    [23] A. G. Segalla, S. S. Nersesov, P. V. Miroshnikov, N. A. Chistyakova, E. D. Politova, A. V. Mosunov. Anisotropy and temperature stability of parameters of Bi3TiNbO9-based high-temperature piezoceramics. Inorg. Mater., 53, 103(2017).

    [24] H. B. Chen, F. Fu, J. W. Zhai. Fabrication and piezoelectric property of highly textured CaBi2Nb2O9 ceramics by tape casting. Jpn. J. Appl. Phys., 50, 050207(2011).

    [25] P. Li, J. W. Zhai, B. Shen, S. J. Zhang, X. L. Li, F. Y. Zhu, X. M. Zhang. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv. Mater., 30, 1705171(2018).

    [26] G. Zhao, C. Pan, L. Yin, W. Song, X. Zhu, J. Yang, Y. Sun. Textured piezoelectric ceramic CaBi2Nb2O9 obtained by a conventional solid-state reaction. Ceram. Int., 50, 18426(2024).

    [27] X. C. Xie, Z. Y. Zhou, T. Chen, R. H. Liang, X. L. Dong. Enhanced electrical properties of NaBi modified CaBi2Nb2O9-based Aurivillius piezoceramics via structural distortion. Ceram. Int., 45, 5425(2019).

    [28] G. Liu, D. Wang, C. Wu, J. G. Wu, Q. Chen. A realization of excellent piezoelectricity and good thermal stability in CaBi2Nb2O9 pseudo phase boundary. J. Am. Ceram. Soc., 102, 1794(2019).

    [29] Z. N. Chen, Y. H. Zhang, P. M. Huang, X. D. Li, J. Du, W. F. Bai, L. L. Li, F. Wen, P. Zheng, W. Wu, L. Zheng, Y. Zhang. Enhanced piezoelectric properties and thermal stability in Mo/Cr co-doped CaBi2Nb2O9 high-temperature piezoelectric ceramics. J. Phys. Chem. Solids, 136, 109195(2020).

    [30] C. B. Long, N. Ji, L. Yang, W. J. Zhou, K. Zheng, W. Ren, L. J. Liu. Effects of (Li0.5Sm0.5)/W co-substitution and sintering temperature on the structure and electrical properties of ultrahigh Curie temperature piezoceramics, Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2−xWxO9. J. Eur. Ceram. Soc., 41, 3369(2021).

    [31] J.-N. Chen, C. Kang, R.-M. Hou, X. Zhao, C.-M. Wang. Dielectric, ferroelectric, and piezoelectric properties of Gd-modified CaBi2Nb2O9 high Curie temperature ceramics. J. Mater. Res., 36, 1086(2021).

    [32] C. B. Long, W. J. Zhou, W. Ren, Y. J. Zhang, K. Zheng, L. J. Liu. Enhanced piezoelectric properties and high electrical resistivity in (Li0.5Pr0.5) co-substituted bismuth calcium tantalate (CaBi2Ta2O9) ceramics. Scr. Mater., 204, 114102(2021).

    [33] Z. H. Peng, L. Chen, Y. Xiang, F. Cao. Microstructure and electrical properties of lanthanides-doped CaBi2Nb2O9 ceramics. Mater. Res. Bull., 148, 111670(2022).

    [34] J. N. Chen, Q. Wang, X. Zhao, C. M. Wang. Significantly enhanced dc electrical resistivity and piezoelectric properties of Tb-modified CaBi2Nb2O9 ceramics for high-temperature piezoelectric applications. J. Am. Ceram. Soc., 105, 4815(2022).

    [35] N. Chen, F. Wang, X. Li, Y. N. Xie, J. Xi, S. Y. Guan, W. Shi, H. Chen, J. Xing, J. G. Zhu. Improving the piezoelectric properties of CBN-based ceramic by a Ce ion. J. Am. Ceram. Soc., 105, 6207(2022).

    [36] C. B. Pan, G. C. Zhao, S. M. Li, X. L. Wang, J. M. Z. Wang, M. Tao, L. H. Yin, W. H. Song, X. B. Zhu, J. Yang, Y. P. Sun. Low-temperature preparation and electrical properties of CaBi2Nb2O9 piezoelectric ceramic by addition of B2O3. J. Appl. Phys., 132, 114104(2022).

    [37] X. Luo, Z. Yan, H. Luo, X. Zhou, B. Li, M. Zhang, D. Zhang. Greatly improved piezoelectricity and thermal stability of (Na, Sm) Co-doped CaBi2Nb2O9 ceramics. Adv. Powder Mater., 2, 100116(2023).

    [38] S. X. Xie, Q. Xu, Q. Chen, J. G. Zhu, Q. Y. Wang. Realizing super-high piezoelectricity and excellent fatigue resistance in domain-engineered bismuth titanate ferroelectrics. Adv. Funct. Mater., 34, 2312645(2024).

    [39] Y. Min, H. Yu, Y. Zhang, Y. Hao, S. Chen, R. Liang, Z. Zhou, B. Yang. Observation of La3+ entering (Bi2O2)2+ layer to tune tilting of NbO6 octahedra in CaBi2Nb2O9 ceramics. Ceram. Int., 50, 19392(2024).

    [40] L. M. Quan, B. Zhang, K. Y. Chen, Y. Z. Meng, W. X. Li, C. B. Long, L. Fang, B. L. Peng, X. Chen, D. Y. Wang, Y. S. Bai, L. L. da Silva, L. J. Liu. Phase structure and electrical properties of (Ba1/2Sr1/2)2+ modified high Curie temperature CaBi2Nb2O9-based ceramics. J. Am. Ceram. Soc., 107, 6119(2024).

    [41] Z. Y. Zhou, X. L. Dong, H. X. Yan, H. Chen, C. L. Mao. Doping effects on the electrical conductivity of bismuth layered Bi3TiNbO9-based ceramics. J. Appl. Phys., 100, 044112(2006).

    [42] G. Liu, J. Yuan, R. Nie, L. M. Jiang, Z. Tan, J. G. Zhu, Q. Chen. Electrical properties and thermal stability of Ce-modified Ca0.80(Li0.5Bi0.5)0.20Bi2Nb2O9 ceramics. J. Alloys Compd., 697, 380(2017).

    [43] Q. Q. Hou, B. Yang, C. Ma, Z. Y. Zhou, R. H. Liang, H. Li, X. L. Dong. Tailoring structure and piezoelectric properties of CaBi2Nb2O9 ceramics by W6+-doping. Ceram. Int., 48, 16677(2022).

    [44] F. Wang, X. Li, Q. Xu, H. Chen, J. W. Xi, F. F. Zhang, Z. Tan, Y. Cheng, S. F. Wang, J. Xing, Q. Chen, J. G. Zhu. Simultaneous enhancement of electrical and mechanical properties in CaBi2Nb2O9-based ceramics. J. Eur. Ceram. Soc., 42, 4196(2022).

    [45] Z. N. Chen, L. S. Sheng, X. D. Li, P. Zheng, W. F. Bai, L. Li, F. Wen, W. Wu, L. Zheng, J. D. Cui. Enhanced piezoelectric properties and electrical resistivity in W/Cr co-doped CaBi2Nb2O9 high-temperature piezoelectric ceramics. Ceram. Int., 45, 6004(2019).

    [46] H. P. Wang, C. Chen, X. P. Jiang, X. K. Huang, X. Nie, L. W. Huang, X. Yu. Cu/W co-doped CaBi2Nb2O9 piezoelectric ceramics on structural and electrical properties. J. Alloys Compd., 896, 163078(2022).

    [47] R. L. Withers, J. G. Thompson, A. D. Rae. The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6. J. Solid State Chem., 94, 404(1991).

    [48] R. E. Newnham, R. W. Wolfe, J. F. Dorrian. Structural basis of ferroelectricity in the bismuth titanate family. Mater. Res. Bull., 6, 1029(1971).

    [49] G. Liu, S. Q. Ren, C. Wu, D. Wang, F. L. Li, J. G. Wu, Q. Chen. Enhanced thermal stability of (NaCe)-multidoped CaBi2Nb2O9 by A-site vacancies-induced pseudo-tetragonal distortion. J. Am. Ceram. Soc., 101, 4615(2018).

    [50] J. Yuan, R. Nie, Q. Chen, J. Xing, J. G. Zhu. Evolution of structural distortion and electric properties of BTN-based high-temperature piezoelectric ceramics with tungsten substitution. J. Alloys Compd., 785, 475(2019).

    [51] B. Frit, J. P. Mercurio. The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures. J. Alloys Compd., 188, 27(1992).

    [52] J. Yuan, R. Nie, Q. Chen, D. Q. Xiao, J. G. Zhu. Structural distortion, piezoelectric properties, and electric resistivity of A-site substituted Bi3TiNbO9-based high-temperature piezoceramics. Mater. Res. Bull., 115, 70(2019).

    [53] S. T. Jie, X. P. Jiang, C. Chen, X. K. Huang, X. Nie, H. P. Wang. Influence of Co/W co-doping on structural and electrical properties of Na0.5Bi2.5Nb2O9 piezoelectric ceramics. Ceram. Int., 48, 6258(2022).

    [54] K.-i. Kakimoto, K. Akao, Y. Guo, H. Ohsato. Raman scattering study of piezoelectric (Na0.5K0.5)NbO3–LiNbO3 ceramics. Jpn. J. Appl. Phys., 44, 7064(2005).

    [55] S. T. Jie, X. P. Jiang, C. Chen, X. K. Huang, X. Nie, Q. L. Jiang. Effect of Co3+ on structure and electrical properties of Na0.5Bi2.5Nb2O9 ceramics. J. Mater. Sci., Mater. Electron., 32, 23834(2021).

    [56] J. Zhang, Z. Pan, F. F. Guo, W. C. Liu, H. P. Ning, Y. B. Chen, M. H. Lu, B. Yang, J. Chen, S. T. Zhang, X. R. Xing, J. Rödel, W. W. Cao, Y. F. Chen. Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat. Commun., 6, 6615(2015).

    [57] L. X. Li, Y. M. Han, P. Zhang, J. Li, L. F. Cao, Q. W. Liao. Effect of Co2O3 additive on the microstructures and dielectric properties of MgTiO3 ceramics. Ferroelectrics, 388, 167(2009).

    [58] N. Chen, F. Wang, X. Li, X. J. Yang, H. Chen, Z. Tan, J. Xing, J. G. Zhu. Insight into the ultrahigh electric performance of Aurivillius CBTaCBN solid solution. Inorg. Chem., 62, 6993(2023).

    [59] D. Wang, Y. G. Xu, Y. L. Shi, H. L. Wang, X. J. Wu, C. Wu, J. G. Zhu, Q. Chen. The structure and electrical properties of Ca0.6(Li0.5Bi0.5−xPrx)0.4Bi2Nb2O9 high-temperature piezoelectric ceramics. J. Am. Ceram. Soc., 103, 266(2019).

    [60] H. Liu, S. F. Wang, H. J. Gao, H. Yang, F. Wang, X. P. Chen, L. M. Fang, S. N. Tang, Z. Yi, D. F. Li. A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies. Sep. Purif. Technol., 281, 119855(2022).

    [61] C. B. Long, H. Q. Fan, M. M. Li. A ferroelectric polarization contribution from defect dipoles in acceptor Aurivillius oxide, (Na,Bi)0.47(Li,Ce)0.03Bi2Ta1.97Sc0.03O8.97. Appl. Phys. Lett., 103, 192908(2013).

    [62] C. L. Diao, J. B. Xu, H. W. Zheng, L. Fang, Y. Z. Gu, W. F. Zhang. Dielectric and piezoelectric properties of cerium modified BaBi4Ti4O15 ceramics. Ceram. Int., 39, 6991(2013).

    [63] J. W. Xi, H. Chen, Z. Tan, J. Xing, J. G. Zhu. Origin of high piezoelectricity in CBT-based Aurivillius ferroelectrics: Glide of (Bi2O2)2+ blocks and suppressed internal bias field. Acta Mater., 237, 118146(2022).

    [64] X. C. Xie, Z. Y. Zhou, B. T. Gao, Z. Y. Zhou, R. H. Liang, X. L. Dong. Ion-pair engineering-induced high piezoelectricity in Bi4Ti3O12-based high-temperature piezoceramics. ACS Appl. Mater. Interfaces, 14, 14321(2022).

    [65] F. Wang, X. Li, Q. Xu, N. Chen, H. Chen, Y. Cheng, F. F. Zhang, Z. Tan, J. Xing, Q. Chen, J. G. Zhu. Influence of acceptor–donor codoping on the structure, electrical properties, and hardness of CaBi2Nb2O9-based ceramics. J. Alloys Compd., 910, 164853(2022).

    [66] X. H. Xing, F. Cao, Z. H. Peng, Y. Xiang. The effects of oxygen vacancies on the electrical properties of W, Ti doped CaBi2Nb2O9 piezoceramics. Curr. Appl. Phys., 18, 1149(2018).

    [67] W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7, 1564(2011).

    [68] Q. Xu, S. Xie, L. Li, J. Xing, Q. Chen, J. Zhu, Q. Wang. Tailoring hardness behaviors of BIT-based piezoceramics via doping and annealing strategies. J. Eur. Ceram. Soc., 43, 916(2023).

    [69] B. R. Lawn, A. G. Evans, D. B. Marshall. Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc., 64, 574(1980).

    Fei Wang, Jia Yang, Qing Yang, Ning Chen, Xinji Yang, Mingyue Mo, Jie Xing, Zhi Tan, Zhongqing Tian, Fancheng Meng, Yuheng Guo, Huixing Lin, Jianguo Zhu. Enhanced electrical properties and Vickers hardness of calcium bismuth niobate ceramics by W/Co substituted at B-site[J]. Journal of Advanced Dielectrics, 2024, 14(4): 2440019
    Download Citation