[1] R. C. Turner, P. A. Fuierer, R. E. Newnham, T. R. Shrout. Materials for high temperature acoustic and vibration sensors: A review. Appl. Acoust., 41, 299(1994).
[2] S. J. Zhang, F. P. Yu, D. J. Green. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 94, 3153(2011).
[3] Y. G. Li, Z. Y. Zhou, R. H. Liang, B. T. Gao, Z. Y. Zhou, X. L. Dong. A simple Bi3+ self-doping strategy constructing pseudo-tetragonal phase boundary to enhance electrical properties in CaBi2Nb2O9 high-temperature piezoceramics. J. Eur. Ceram. Soc., 42, 2772(2022).
[4] J.-S. Zhou, K. Wang, F.-Z. Yao, T. Zheng, J. G. Wu, D. Q. Xiao, J. G. Zhu, J.-F. Li. Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J. Mater. Chem. C, 3, 8780(2015).
[5] S. Cheng, B.-P. Zhang, L. Zhao, K.-K. Wang. Enhanced insulating and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: Analysis of Bi3+ volatilization and phase structures. J. Mater. Chem. C, 6, 3982(2018).
[6] H. Tao, H. J. Wu, Y. Liu, Y. Zhang, J. G. Wu, F. Li, X. Lyu, C. L. Zhao, D. Q. Xiao, J. G. Zhu, S. J. Pennycook. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc., 141, 13987(2019).
[7] D. W. Wang, Z. M. Fan, G. H. Rao, G. Wang, Y. Liu, C. L. Yuan, T. Ma, D. J. Li, X. L. Tan, Z. L. Lu, A. Feteira, S. Y. Liu, C. R. Zhou, S. J. Zhang. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy, 76, 104944(2020).
[8] S.-H. Go, D.-S. Kim, J.-M. Eum, H.-S. Shin, S.-J. Chae, S.-W. Kim, E.-J. Kim, J.-U. Woo, S. Nahm. Excellent piezoelectric properties of (K, Na)(Nb, Sb)O3-CaZrO3-(Bi, Ag)ZrO3 lead-free piezoceramics. J. Alloys Compd., 889, 161817(2021).
[9] H. J. Li, L. X. Xie, Z. Tan, J. Xing, X. Li, H. Chen, F. Wang, Y. Cheng, M. J. Tang, J. G. Zhu. Utilization of nonstoichiometric Nb5+ to optimize comprehensive electrical properties of KNN-based ceramics. Inorg. Chem., 61, 18660(2022).
[10] Y. Chen, L. F. Li, Z. Zhou, Y. Y. Wang, Q. Chen, Q. Y. Wang. La2O3-modified BiYbO3–Pb(Zr,Ti)O3 ternary piezoelectric ceramics with enhanced electrical properties and thermal depolarization temperature. J. Adv. Ceram., 12, 1593(2023).
[11] K. Cai, F. Jiang, P. Y. Deng, J. T. Ma, D. Guo, J. Ihlefeld. Enhanced ferroelectric phase stability and high temperature piezoelectricity in PN ceramics via multisite co-doping. J. Am. Ceram. Soc., 98, 3165(2015).
[12] R. R. Fang, Z. Y. Zhou, R. H. Liang, X. L. Dong. Effects of CuO addition on the sinterability and electric properties in PbNb2O6-based ceramics. Ceram. Int., 46, 23505(2020).
[13] R. R. Fang, Z. Y. Zhou, R. H. Liang, X. L. Dong. Significantly improved dielectric and piezoelectric properties by defects in PbNb2O6-based piezoceramics. Ceram. Int., 47, 26942(2021).
[14] C. C. Li, H. C. Xiang, J. W. Chen, L. Fang. Phase transition, dielectric relaxation and piezoelectric properties of bismuth doped La2Ti2O7 ceramics. Ceram. Int., 42, 11453(2016).
[15] T. D. Sparks, P. A. Fuierer, D. R. Clarke. Anisotropic thermal diffusivity and conductivity of La-doped strontium niobate Sr2Nb2O7. J. Am. Ceram. Soc., 93, 1136(2010).
[16] Y. Y. Li, M. J. Xu, X. X. Yan, C. Addiego, L. M. Jiang, H. Wang, J. G. Zhu. Origin of the enhanced piezoelectricity of vanadium-doped La2Ti2O7 ceramics. J. Phys. Chem. C, 125, 26180(2021).
[17] B. Aurivillius. Mixed bismuth oxides with layer lattices. 1. The structure type of CaNb2Bi2O9. Acta Crystallogr., 1, 463(1949).
[18] L. Korzunova. PmP118. Piezoelectric ceramics for high-temperature transducers. Ferroelectrics, 134, 175(1992).
[19] R. Aoyagi, H. Takeda, S. Okamura, T. Shiosaki. Synthesis and electrical properties of sodium bismuth niobate Na0.5Bi2.5Nb2O9. Mater. Res. Bull., 38, 25(2003).
[20] H. X. Yan, H. T. Zhang, R. U. Ubic, M. J. Reece, J. Liu, Z. J. Shen, Z. Zhang. A lead-free high-Curie-point ferroelectric ceramic, CaBi2Nb2O9. Adv. Mater., 17, 1261(2005).
[21] H. X. Yan, H. T. Zhang, M. J. Reece, X. L. Dong. Thermal depoling of high Curie point Aurivillius phase ferroelectric ceramics. Appl. Phys. Lett., 87, 082911(2005).
[22] T. Tokusu, H. Miyabayashi, Y. Hiruma, H. Nagata, T. Takenaka. Electrical properties and piezoelectric properties of CaBi2Ta2O9-based ceramics. Key Eng. Mater., 421-422(2009).
[23] A. G. Segalla, S. S. Nersesov, P. V. Miroshnikov, N. A. Chistyakova, E. D. Politova, A. V. Mosunov. Anisotropy and temperature stability of parameters of Bi3TiNbO9-based high-temperature piezoceramics. Inorg. Mater., 53, 103(2017).
[24] H. B. Chen, F. Fu, J. W. Zhai. Fabrication and piezoelectric property of highly textured CaBi2Nb2O9 ceramics by tape casting. Jpn. J. Appl. Phys., 50, 050207(2011).
[25] P. Li, J. W. Zhai, B. Shen, S. J. Zhang, X. L. Li, F. Y. Zhu, X. M. Zhang. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv. Mater., 30, 1705171(2018).
[26] G. Zhao, C. Pan, L. Yin, W. Song, X. Zhu, J. Yang, Y. Sun. Textured piezoelectric ceramic CaBi2Nb2O9 obtained by a conventional solid-state reaction. Ceram. Int., 50, 18426(2024).
[27] X. C. Xie, Z. Y. Zhou, T. Chen, R. H. Liang, X. L. Dong. Enhanced electrical properties of NaBi modified CaBi2Nb2O9-based Aurivillius piezoceramics via structural distortion. Ceram. Int., 45, 5425(2019).
[28] G. Liu, D. Wang, C. Wu, J. G. Wu, Q. Chen. A realization of excellent piezoelectricity and good thermal stability in CaBi2Nb2O9 pseudo phase boundary. J. Am. Ceram. Soc., 102, 1794(2019).
[29] Z. N. Chen, Y. H. Zhang, P. M. Huang, X. D. Li, J. Du, W. F. Bai, L. L. Li, F. Wen, P. Zheng, W. Wu, L. Zheng, Y. Zhang. Enhanced piezoelectric properties and thermal stability in Mo/Cr co-doped CaBi2Nb2O9 high-temperature piezoelectric ceramics. J. Phys. Chem. Solids, 136, 109195(2020).
[30] C. B. Long, N. Ji, L. Yang, W. J. Zhou, K. Zheng, W. Ren, L. J. Liu. Effects of (Li0.5Sm0.5)/W co-substitution and sintering temperature on the structure and electrical properties of ultrahigh Curie temperature piezoceramics, Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2−xWxO9. J. Eur. Ceram. Soc., 41, 3369(2021).
[31] J.-N. Chen, C. Kang, R.-M. Hou, X. Zhao, C.-M. Wang. Dielectric, ferroelectric, and piezoelectric properties of Gd-modified CaBi2Nb2O9 high Curie temperature ceramics. J. Mater. Res., 36, 1086(2021).
[32] C. B. Long, W. J. Zhou, W. Ren, Y. J. Zhang, K. Zheng, L. J. Liu. Enhanced piezoelectric properties and high electrical resistivity in (Li0.5Pr0.5) co-substituted bismuth calcium tantalate (CaBi2Ta2O9) ceramics. Scr. Mater., 204, 114102(2021).
[33] Z. H. Peng, L. Chen, Y. Xiang, F. Cao. Microstructure and electrical properties of lanthanides-doped CaBi2Nb2O9 ceramics. Mater. Res. Bull., 148, 111670(2022).
[34] J. N. Chen, Q. Wang, X. Zhao, C. M. Wang. Significantly enhanced dc electrical resistivity and piezoelectric properties of Tb-modified CaBi2Nb2O9 ceramics for high-temperature piezoelectric applications. J. Am. Ceram. Soc., 105, 4815(2022).
[35] N. Chen, F. Wang, X. Li, Y. N. Xie, J. Xi, S. Y. Guan, W. Shi, H. Chen, J. Xing, J. G. Zhu. Improving the piezoelectric properties of CBN-based ceramic by a Ce ion. J. Am. Ceram. Soc., 105, 6207(2022).
[36] C. B. Pan, G. C. Zhao, S. M. Li, X. L. Wang, J. M. Z. Wang, M. Tao, L. H. Yin, W. H. Song, X. B. Zhu, J. Yang, Y. P. Sun. Low-temperature preparation and electrical properties of CaBi2Nb2O9 piezoelectric ceramic by addition of B2O3. J. Appl. Phys., 132, 114104(2022).
[37] X. Luo, Z. Yan, H. Luo, X. Zhou, B. Li, M. Zhang, D. Zhang. Greatly improved piezoelectricity and thermal stability of (Na, Sm) Co-doped CaBi2Nb2O9 ceramics. Adv. Powder Mater., 2, 100116(2023).
[38] S. X. Xie, Q. Xu, Q. Chen, J. G. Zhu, Q. Y. Wang. Realizing super-high piezoelectricity and excellent fatigue resistance in domain-engineered bismuth titanate ferroelectrics. Adv. Funct. Mater., 34, 2312645(2024).
[39] Y. Min, H. Yu, Y. Zhang, Y. Hao, S. Chen, R. Liang, Z. Zhou, B. Yang. Observation of La3+ entering (Bi2O2)2+ layer to tune tilting of NbO6 octahedra in CaBi2Nb2O9 ceramics. Ceram. Int., 50, 19392(2024).
[40] L. M. Quan, B. Zhang, K. Y. Chen, Y. Z. Meng, W. X. Li, C. B. Long, L. Fang, B. L. Peng, X. Chen, D. Y. Wang, Y. S. Bai, L. L. da Silva, L. J. Liu. Phase structure and electrical properties of (Ba1/2Sr1/2)2+ modified high Curie temperature CaBi2Nb2O9-based ceramics. J. Am. Ceram. Soc., 107, 6119(2024).
[41] Z. Y. Zhou, X. L. Dong, H. X. Yan, H. Chen, C. L. Mao. Doping effects on the electrical conductivity of bismuth layered Bi3TiNbO9-based ceramics. J. Appl. Phys., 100, 044112(2006).
[42] G. Liu, J. Yuan, R. Nie, L. M. Jiang, Z. Tan, J. G. Zhu, Q. Chen. Electrical properties and thermal stability of Ce-modified Ca0.80(Li0.5Bi0.5)0.20Bi2Nb2O9 ceramics. J. Alloys Compd., 697, 380(2017).
[43] Q. Q. Hou, B. Yang, C. Ma, Z. Y. Zhou, R. H. Liang, H. Li, X. L. Dong. Tailoring structure and piezoelectric properties of CaBi2Nb2O9 ceramics by W6+-doping. Ceram. Int., 48, 16677(2022).
[44] F. Wang, X. Li, Q. Xu, H. Chen, J. W. Xi, F. F. Zhang, Z. Tan, Y. Cheng, S. F. Wang, J. Xing, Q. Chen, J. G. Zhu. Simultaneous enhancement of electrical and mechanical properties in CaBi2Nb2O9-based ceramics. J. Eur. Ceram. Soc., 42, 4196(2022).
[45] Z. N. Chen, L. S. Sheng, X. D. Li, P. Zheng, W. F. Bai, L. Li, F. Wen, W. Wu, L. Zheng, J. D. Cui. Enhanced piezoelectric properties and electrical resistivity in W/Cr co-doped CaBi2Nb2O9 high-temperature piezoelectric ceramics. Ceram. Int., 45, 6004(2019).
[46] H. P. Wang, C. Chen, X. P. Jiang, X. K. Huang, X. Nie, L. W. Huang, X. Yu. Cu/W co-doped CaBi2Nb2O9 piezoelectric ceramics on structural and electrical properties. J. Alloys Compd., 896, 163078(2022).
[47] R. L. Withers, J. G. Thompson, A. D. Rae. The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6. J. Solid State Chem., 94, 404(1991).
[48] R. E. Newnham, R. W. Wolfe, J. F. Dorrian. Structural basis of ferroelectricity in the bismuth titanate family. Mater. Res. Bull., 6, 1029(1971).
[49] G. Liu, S. Q. Ren, C. Wu, D. Wang, F. L. Li, J. G. Wu, Q. Chen. Enhanced thermal stability of (NaCe)-multidoped CaBi2Nb2O9 by A-site vacancies-induced pseudo-tetragonal distortion. J. Am. Ceram. Soc., 101, 4615(2018).
[50] J. Yuan, R. Nie, Q. Chen, J. Xing, J. G. Zhu. Evolution of structural distortion and electric properties of BTN-based high-temperature piezoelectric ceramics with tungsten substitution. J. Alloys Compd., 785, 475(2019).
[51] B. Frit, J. P. Mercurio. The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures. J. Alloys Compd., 188, 27(1992).
[52] J. Yuan, R. Nie, Q. Chen, D. Q. Xiao, J. G. Zhu. Structural distortion, piezoelectric properties, and electric resistivity of A-site substituted Bi3TiNbO9-based high-temperature piezoceramics. Mater. Res. Bull., 115, 70(2019).
[53] S. T. Jie, X. P. Jiang, C. Chen, X. K. Huang, X. Nie, H. P. Wang. Influence of Co/W co-doping on structural and electrical properties of Na0.5Bi2.5Nb2O9 piezoelectric ceramics. Ceram. Int., 48, 6258(2022).
[54] K.-i. Kakimoto, K. Akao, Y. Guo, H. Ohsato. Raman scattering study of piezoelectric (Na0.5K0.5)NbO3–LiNbO3 ceramics. Jpn. J. Appl. Phys., 44, 7064(2005).
[55] S. T. Jie, X. P. Jiang, C. Chen, X. K. Huang, X. Nie, Q. L. Jiang. Effect of Co3+ on structure and electrical properties of Na0.5Bi2.5Nb2O9 ceramics. J. Mater. Sci., Mater. Electron., 32, 23834(2021).
[56] J. Zhang, Z. Pan, F. F. Guo, W. C. Liu, H. P. Ning, Y. B. Chen, M. H. Lu, B. Yang, J. Chen, S. T. Zhang, X. R. Xing, J. Rödel, W. W. Cao, Y. F. Chen. Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat. Commun., 6, 6615(2015).
[57] L. X. Li, Y. M. Han, P. Zhang, J. Li, L. F. Cao, Q. W. Liao. Effect of Co2O3 additive on the microstructures and dielectric properties of MgTiO3 ceramics. Ferroelectrics, 388, 167(2009).
[58] N. Chen, F. Wang, X. Li, X. J. Yang, H. Chen, Z. Tan, J. Xing, J. G. Zhu. Insight into the ultrahigh electric performance of Aurivillius CBTaCBN solid solution. Inorg. Chem., 62, 6993(2023).
[59] D. Wang, Y. G. Xu, Y. L. Shi, H. L. Wang, X. J. Wu, C. Wu, J. G. Zhu, Q. Chen. The structure and electrical properties of Ca0.6(Li0.5Bi0.5−xPrx)0.4Bi2Nb2O9 high-temperature piezoelectric ceramics. J. Am. Ceram. Soc., 103, 266(2019).
[60] H. Liu, S. F. Wang, H. J. Gao, H. Yang, F. Wang, X. P. Chen, L. M. Fang, S. N. Tang, Z. Yi, D. F. Li. A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies. Sep. Purif. Technol., 281, 119855(2022).
[61] C. B. Long, H. Q. Fan, M. M. Li. A ferroelectric polarization contribution from defect dipoles in acceptor Aurivillius oxide, (Na,Bi)0.47(Li,Ce)0.03Bi2Ta1.97Sc0.03O8.97. Appl. Phys. Lett., 103, 192908(2013).
[62] C. L. Diao, J. B. Xu, H. W. Zheng, L. Fang, Y. Z. Gu, W. F. Zhang. Dielectric and piezoelectric properties of cerium modified BaBi4Ti4O15 ceramics. Ceram. Int., 39, 6991(2013).
[63] J. W. Xi, H. Chen, Z. Tan, J. Xing, J. G. Zhu. Origin of high piezoelectricity in CBT-based Aurivillius ferroelectrics: Glide of (Bi2O2)2+ blocks and suppressed internal bias field. Acta Mater., 237, 118146(2022).
[64] X. C. Xie, Z. Y. Zhou, B. T. Gao, Z. Y. Zhou, R. H. Liang, X. L. Dong. Ion-pair engineering-induced high piezoelectricity in Bi4Ti3O12-based high-temperature piezoceramics. ACS Appl. Mater. Interfaces, 14, 14321(2022).
[65] F. Wang, X. Li, Q. Xu, N. Chen, H. Chen, Y. Cheng, F. F. Zhang, Z. Tan, J. Xing, Q. Chen, J. G. Zhu. Influence of acceptor–donor codoping on the structure, electrical properties, and hardness of CaBi2Nb2O9-based ceramics. J. Alloys Compd., 910, 164853(2022).
[66] X. H. Xing, F. Cao, Z. H. Peng, Y. Xiang. The effects of oxygen vacancies on the electrical properties of W, Ti doped CaBi2Nb2O9 piezoceramics. Curr. Appl. Phys., 18, 1149(2018).
[67] W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7, 1564(2011).
[68] Q. Xu, S. Xie, L. Li, J. Xing, Q. Chen, J. Zhu, Q. Wang. Tailoring hardness behaviors of BIT-based piezoceramics via doping and annealing strategies. J. Eur. Ceram. Soc., 43, 916(2023).
[69] B. R. Lawn, A. G. Evans, D. B. Marshall. Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc., 64, 574(1980).