• Laser & Optoelectronics Progress
  • Vol. 60, Issue 16, 1600003 (2023)
Yuheng Xu1,2, Cheng Qiu1,*, Yongyi Chen1,3,**, Ye Wang1,4..., Lei Liang1, Peng Jia1, Li Qin1, Yongqiang Ning1 and Lijun Wang1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin, China
  • 2Daheng College, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Jlight Semiconductor Technology Co., Ltd., Changchun 130102, Jilin, China
  • 4School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    DOI: 10.3788/LOP222487 Cite this Article Set citation alerts
    Yuheng Xu, Cheng Qiu, Yongyi Chen, Ye Wang, Lei Liang, Peng Jia, Li Qin, Yongqiang Ning, Lijun Wang. Research Progress of High-Speed and Wide-Tuned Frequency Swept Lasers for Optical Coherence Tomography Applications[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1600003 Copy Citation Text show less
    References

    [1] Alonso-Caneiro D, Karnowski K, Kaluzny B J et al. Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system[J]. Optics Express, 19, 14188-14199(2011).

    [2] Cellina M, Floridi C, Rosti C et al. MRI of acute optic neuritis (ON) at the first episode: can we predict the visual outcome and the development of multiple sclerosis (MS)?[J]. La Radiologia Medica, 124, 1296-1303(2019).

    [3] Carrasco-Zevallos O M, Viehland C, Keller B et al. Review of intraoperative optical coherence tomography: technology and applications[J]. Biomedical Optics Express, 8, 1607-1637(2017).

    [4] Melillo P, Rossi S, di Iorio V et al. Reproducibility of en-face optical coherence tomography imaging for macular atrophy area evaluation in juvenile macular degeneration[M]. Kyriacou E, Christofides S, Pattichis C S. XIV mediterranean conference on medical and biological engineering and computing 2016. IFMBE proceedings, 57, 250-253(2016).

    [5] Padnick-Silver L, Weinberg A B, Lafranco F P et al. Pilot study for the detection of early exudative age-related macular degeneration with optical coherence tomography[J]. Retina, 32, 1045-1056(2012).

    [6] Töteberg-Harms M, Sturm V, Knecht P B et al. Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 250, 279-287(2012).

    [7] Cennamo G, Montorio D, Velotti N et al. Optical coherence tomography angiography in pre-perimetric open-angle glaucoma[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 255, 1787-1793(2017).

    [8] Spaide R F. Microvascular flow abnormalities associated with retinal vasculitis: a potential of mechanism of retinal injury[J]. Retina, 37, 1034-1042(2017).

    [9] Abucham-Neto J Z, Torricelli A A M, Lui A C F et al. Comparison between optical coherence tomography angiography and fluorescein angiography findings in retinal vasculitis[J]. International Journal of Retina and Vitreous, 4, 1-5(2018).

    [10] Bezerra H G, Attizzani G F, Sirbu V et al. Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention[J]. JACC: Cardiovascular Interventions, 6, 228-236(2013).

    [11] Yoshimura S, Kawasaki M, Hattori A et al. Demonstration of intraluminal thrombus in the carotid artery by optical coherence tomography: technical case report[J]. Neurosurgery, 67, onsE305(2010).

    [12] Jiang T M, Chen S B, Liang G Q et al. The contrast study on OCT and IVUS in the diagnosis of coronary heart diseases[J]. Tianjin Medical Journal, 35, 338-340(2007).

    [13] Gonzalo N, Serruys P W, Garcia-Garcia H M et al. Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries[J]. Revista Española De Cardiología, 62, 615-624(2009).

    [14] Toutouzas K, Chatzizisis Y S, Riga M et al. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA[J]. Atherosclerosis, 240, 510-519(2015).

    [15] Haak R, Ahrens M, Schneider H et al. Handheld OCT probe for intraoral diagnosis on teeth[J]. Proceedings of SPIE, 11073, 110730W(2019).

    [16] Shi B Y, Meng Z, Liu T G et al. Non-distorted imaging depth of optical coherence tomography system in human dental tissues[J]. Acta Optica Sinica, 34, 0217001(2014).

    [17] Marcauteanu C, Bradu A, Sinescu C et al. The advantages of a swept source optical coherence tomography system in the evaluation of occlusal disorders[J]. Proceedings of SPIE, 8925, 235-240(2014).

    [18] Hong C, Wang W, Zhong N S et al. Visualization of peripheral pulmonary artery red thrombi utilizing optical coherence tomography[J]. Korean Journal of Radiology, 14, 854-858(2013).

    [19] Sellam A, Glacet-Bernard A, Coscas F et al. Abnormal retinal artery perfusion and optical coherence tomography angiography[J]. Journal Francais D’Ophtalmologie, 40, 353-362(2017).

    [20] Cheng K, Du J F, Zhang X M et al. Expression and clinical significance of Oct-4 in stage ⅢB colon cancer and its correlation with CD45RO+ cell infiltration[J]. Chinese Journal of Microecology, 29, 199-201(2017).

    [21] Familiari L, Strangio G, Consolo P et al. Optical coherence tomography evaluation of ulcerative colitis: the patterns and the comparison with histology[J]. The American Journal of Gastroenterology, 101, 2833-2840(2006).

    [22] Ke S T, Chen M H, Zheng Z X et al. Super-resolution reconstruction of optical coherence tomography retinal images by generating adversarial network[J]. Chinese Journal of Lasers, 49, 1507203(2022).

    [23] Yuan K, Huo L. Multiple-scale inpainting convolutional neural network for retinal OCT image segmentation[J]. Chinese Journal of Lasers, 48, 1507004(2021).

    [24] Gaucher D, Saleh M, Sauer A et al. Spectral OCT analysis in Bietti crystalline dystrophy[J]. European Journal of Ophthalmology, 20, 612-614(2010).

    [25] van der Sijde J N, Karanasos A, van Ditzhuijzen N S et al. Safety of optical coherence tomography in daily practice: a comparison with intravascular ultrasound[J]. European Heart Journal-Cardiovascular Imaging, 18, 467-474(2016).

    [26] Takarada S, Imanishi T, Liu Y et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion[J]. Catheterization and Cardiovascular Interventions, 75, 202-206(2010).

    [27] Adler D C, Chen Y, Huber R et al. Three-dimensional endomicroscopy using optical coherence tomography[J]. Nature Photonics, 1, 709-716(2007).

    [28] Kolb J P, Pfeiffer T, Eibl M et al. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates[J]. Biomedical Optics Express, 9, 120-130(2017).

    [29] Yun S H, Boudoux C, Tearney G J et al. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter[J]. Optics Letters, 28, 1981-1983(2003).

    [30] Adler D C, Wieser W, Trepanier F et al. Coherence length extension of Fourier domain mode locked lasers[J]. Proceedings of SPIE, 8213, 82130O(2012).

    [31] Ishii H, Tanobe H, Kano F et al. Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers[J]. IEEE Journal of Quantum Electronics, 32, 433-441(1996).

    [32] Tokurakawa M, Daniel J M O, Chenug C S et al. Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages[J]. Optics Express, 23, 471-476(2015).

    [33] Chen M H, Ding Z H, Tao Y H et al. Development of broad-band high-speed linearized swept laser source[J]. Chinese Journal of Lasers, 38, 0204001(2011).

    [34] Forster P, Romano C, Schneider J et al. High-power continuous-wave Tm3+∶Ho3+-codoped fiber laser operation from 2.1 µm to 2.2 µm[J]. Optics Letters, 47, 2542-2545(2022).

    [35] Wieser W, Biedermann B R, Klein T et al. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second[J]. Optics Express, 18, 14685-14704(2010).

    [36] Jayaraman V, Cole G D, Robertson M et al. High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range[J]. Electronics Letters, 48, 867-869(2012).

    [37] Burgner C, Carter J, Donaldson A et al. Reliable widely tunable electrically pumped 1050 nm MEMS-VCSELs with amplifier in single butterfly co-package[J]. Proceedings of SPIE, 11228, 1122809(2020).

    [38] Reyes C, Piwonski T, Corbett B et al. Automated heterodyne method to characterize semiconductor based akinetic swept laser sources[J]. Proceedings of SPIE, 11078, 110780X(2019).

    [39] George B, Derickson D. High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode sources for OCT resolution enhancement[J]. Proceedings of SPIE, 7554, 75542O(2010).

    [40] Han L S, Liang S, Xu J J et al. Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs[C](2015).

    [41] Everson M, Duma V F, Dobre G. Optimisation of a polygon mirror-based spectral filter for swept source optical coherence tomography (SS-OCT)[J]. Proceedings of SPIE, 10591, 105910V(2018).

    [42] Yoo J K, Lim S D, Kim S K. Tunable single longitudinal mode Tm-doped fiber ring laser[C](2015).

    [43] Zeil P, Pasiskevicius V, Laurell F. Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating[J]. Optics Express, 21, 4027-4035(2013).

    [44] Golubovic B, Bouma B E, Tearney G J et al. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser[J]. Optics Letters, 22, 1704-1706(1997).

    [45] Oh W Y, Yun S H, Tearney G J et al. Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers[J]. IEEE Photonics Technology Letters, 17, 678-680(2005).

    [46] McComb T S, Sudesh V, Shah L et al. Widely tunable (>100 nm) continuous-wave narrow-linewidth high-power thulium fiber laser[J]. Proceedings of SPIE, 7193, 71931I(2009).

    [47] Wang F Q, Meng Y F, Kelleher E et al. Stable gain-switched thulium fiber laser with 140-nm tuning range[J]. IEEE Photonics Technology Letters, 28, 1340-1343(2016).

    [48] Wang F, Shen D Y, Fan D Y et al. Spectral narrowing of cladding-pumped high-power Tm-doped fiber laser using a volume Bragg grating-pair[J]. Applied Physics Express, 3, 112701(2010).

    [49] McComb T S, Shah L, Sims R A et al. High power tunable thulium fiber laser with volume Bragg grating spectral control[J]. Proceedings of SPIE, 7580, 75801F(2010).

    [50] Duma M A, Duma V F. Theoretical approach on the linearity increase of scanning functions using supplemental mirrors[J]. Proceedings of SPIE, 11028, 1102817(2019).

    [51] Huber R, Taira K, Ko T H et al. High-speed, amplified, frequency swept laser at 20 kHz sweep rates for OCT imaging[C], 1657-1659(2005).

    [52] Huber R, Wojtkowski M, Taira K et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Optics Express, 13, 3513-3528(2005).

    [53] Huber R, Wojtkowski M, Fujimoto J G. Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography[J]. Optics Express, 14, 3225-3237(2006).

    [54] Hsu K, Cormack R H. Tunable optical filters for dynamic networks[C], 776-781(2003).

    [55] Jeon M Y, Zhang J, Wang Q et al. High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs[J]. Optics Express, 16, 2547-2554(2008).

    [56] Schmidt M, Pfeiffer T, Grill C et al. Self-stabilization mechanism in ultra-stable Fourier domain mode-locked (FDML) lasers[J]. OSA Continuum, 3, 1589-1607(2020).

    [57] Xu J B, Zhu R, Wang X et al. Fourier domain mode locking laser for enhanced sweeping range based on dispersion-shifted fiber[C], JW2A.28(2012).

    [58] Huber R, Adler D C, Fujimoto J G. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s[J]. Optics Letters, 31, 2975-2977(2006).

    [59] Wieser W, Klein T, Adler D C et al. Extended coherence length megahertz FDML and its application for anterior segment imaging[J]. Biomedical Optics Express, 3, 2647-2657(2012).

    [60] Eigenwillig C M, Wieser W, Biedermann B R et al. Subharmonic Fourier domain mode locking[J]. Optics Letters, 34, 725-727(2009).

    [61] Tan B Y, McNabb R P, Zheng F H et al. Ultrawide field, distortion-corrected ocular shape estimation with MHz optical coherence tomography (OCT)[J]. Biomedical Optics Express, 12, 5770-5781(2021).

    [62] Miao Y S, Siadati M, Song J et al. Phase-corrected buffer averaging for enhanced OCT angiography using FDML laser[J]. Optics Letters, 46, 3833-3836(2021).

    [63] Mao Y X, Flueraru C, Chang S D et al. High-power 1300 nm FDML swept laser using polygon-based narrowband optical scanning filter[J]. Proceedings of SPIE, 7168, 716822(2009).

    [64] Huang D M, Shi Y H, Li F et al. Fourier domain mode locked laser and its applications[J]. Sensors, 22, 3145(2022).

    [65] Paul S, Gierl C, Cesar J et al. High speed surface micromachined MEMS tunable VCSEL for telecom wavelengths[C], AM3K.1(2015).

    [66] Chang-Hasnain C J, Harbison J P, Zah C E et al. Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers[J]. Electronics Letters, 27, 1002-1003(1991).

    [67] Vakhshoori D, Tayebati P, Lu C C et al. 2 mW CW singlemode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range[J]. Electronics Letters, 35, 900-901(1999).

    [68] Riemenschneider F, Maute M, Halbritter H et al. Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range[J]. IEEE Photonics Technology Letters, 16, 2212-2214(2004).

    [69] Shau R, Ortsiefer M, Zigldrum M et al. Low-threshold InGaAlAs/InP vertical-cavity surface-emitting laser diodes for 1.8 μm wavelength range[J]. Electronics Letters, 36, 1286-1287(2000).

    [70] Boehm G, Ortsiefer M, Shau R et al. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm[J]. Journal of Crystal Growth, 251, 748-753(2003).

    [71] Yano T, Saitou H, Kanbara N et al. Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 528-534(2009).

    [72] John D D, Burgner C B, Potsaid B et al. Wideband electrically-pumped 1050 nm MEMS-tunable VCSEL for ophthalmic imaging[J]. Journal of Lightwave Technology, 33, 3461-3468(2015).

    [73] Cook K T, Qiao P F, Chang-Hasnain C J. 1060 nm HCG MEMS-VCSEL with 73 nm tuning range[C], FTu4E.1(2017).

    [74] Gierl C, Gruendl T, Zogal K et al. Linewidth of surface micro-machined MEMS tunable VCSELs at 1.5 µm[C], CTu3N.2(2012).

    [75] Tingzon P M, Husay H A, Cabello N I et al. Indirect stress and air-cavity displacement measurement of MEMS tunable VCSELs via micro-Raman and micro-photoluminescence spectroscopy[J]. Semiconductor Science and Technology, 37, 035013(2022).

    [76] Ishii H, Kano F, Yoshikuni Y et al. Mode stabilization method for superstructure-grating DBR lasers[J]. Journal of Lightwave Technology, 16, 433-442(1998).

    [77] Okuda M, Onaka K. Tunability of distributed Bragg-reflector laser by modulating refractive index in corrugated waveguide[J]. Japanese Journal of Applied Physics, 16, 1501-1502(1977).

    [78] Jayaraman V, Mathur A, Coldren L A et al. Extended tuning range in sampled grating DBR lasers[J]. IEEE Photonics Technology Letters, 5, 489-491(1993).

    [79] Ishii H, Tohmori Y, Yoshikuni Y et al. Multiple-phase shift super structure grating DBR lasers for broad wavelength tuning[J]. IEEE Photonics Technology Letters, 5, 613-615(1993).

    [80] Todt R, Jacke T, Laroy R et al. Demonstration of vernier effect tuning in tunable twin-guide laser diodes[J]. IEE Proceedings-Optoelectronics, 152, 66-71(2005).

    [81] Shindo T, Fujiwara N, Ohiso Y et al. Quasi-continuous tuning of a 1.3-µm-wavelength superstructure grating distributed Bragg reflector laser by enhancing carrier-induced refractive index change[J]. Optics Express, 29, 232-243(2020).

    [82] Whitbread N D, Ward A J, Ponnampalam L et al. Digital wavelength-selected DBR laser[J]. Proceedings of SPIE, 4995, 81-93(2003).

    [83] Davies S C, Whitbread N D, Griffin R A et al. Narrow linewidth, high power, high operating temperature digital supermode distributed Bragg reflector laser[C], 690-692(2013).

    [84] Ward A J, Robbins D J, Reid D C J et al. Realization of phase grating comb reflectors and their application to widely tunable DBR lasers[J]. IEEE Photonics Technology Letters, 16, 2427-2429(2004).

    [85] He X Y, Huang D X, Yu Y L et al. Widely wavelength-selectable lasers with digital concatenated grating reflectors: proposal and simulation[J]. IEEE Photonics Technology Letters, 20, 1754-1756(2008).

    [86] Ye N, Liu Y, Wang B J et al. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier[J]. Proceedings of SPIE, 7987, 79870J(2011).

    [87] Choi D H, Yoshimura R, Ohbayashi K. Tuning of successively scanned two monolithic vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography[J]. Biomedical Optics Express, 4, 2962-2987(2013).

    [88] Zhou D B, Liang S, Zhao L J et al. High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers[J]. Optics Express, 25, 2341-2346(2017).

    [89] Lee M H, Soares F, Baier M et al. 53 nm sampled grating tunable lasers from an InP generic foundry platform[J]. Proceedings of SPIE, 11356, 1135605(2020).

    Yuheng Xu, Cheng Qiu, Yongyi Chen, Ye Wang, Lei Liang, Peng Jia, Li Qin, Yongqiang Ning, Lijun Wang. Research Progress of High-Speed and Wide-Tuned Frequency Swept Lasers for Optical Coherence Tomography Applications[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1600003
    Download Citation