• Acta Optica Sinica (Online)
  • Vol. 1, Issue 2, 0204001 (2024)
Jianping Chen1,4, Tao Liu2, B. M. A. Rahman3, and Liang Hu1,4,*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2National Time Service Center (NTSC), Chinese Academy of Sciences, Lintong710600, Shaanxi , China
  • 3Department of Electrical and Electronic Engineering, City, University of London, London EC 1 V 0HB, United Kingdom
  • 4SJTU-Pinghu Institute of Intelligent Optoelectronics, Pinghu314200, Zhejiang , China
  • show less
    DOI: 10.3788/AOSOL240449 Cite this Article Set citation alerts
    Jianping Chen, Tao Liu, B. M. A. Rahman, Liang Hu. High-Precision Fiber-Optic Time and Frequency Transfer and Device Integration (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(2): 0204001 Copy Citation Text show less
    References

    [1] Campbell S L, Hutson R B, Marti G E et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science, 358, 90-94(2017).

    [2] Delva P, Lodewyck J, Bilicki S et al. Test of special relativity using a fiber network of optical clocks[J]. Physical Review Letters, 118, 221102(2017).

    [3] McGrew W F, Zhang X, Fasano R J et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 564, 87-90(2018).

    [4] Sanner C, Huntemann N, Lange R et al. Optical clock comparison for Lorentz symmetry testing[J]. Nature, 567, 204-208(2019).

    [5] Lin Y G, Wang Q, Li Y et al. First evaluation and frequency measurement of the strontium optical lattice clock at NIM[J]. Chinese Physics Letters, 32, 090601(2015).

    [6] Liu P L, Huang Y, Bian W et al. Measurement of magic wavelengths for the 40Ca+ clock transition[J]. Physical Review Letters, 114, 223001(2015).

    [7] Wang Y B, Yin M J, Ren J et al. Strontium optical lattice clock at the national time service center[J]. Chinese Physics B, 27, 023701(2018).

    [8] Luo L M, Qiao H, Ai D et al. Absolute frequency measurement of an Yb optical clock at the 10-16 level using International Atomic Time[J]. Metrologia, 57, 065017(2020).

    [9] Yao Y, Li B, Yang G et al. Optical frequency synthesizer referenced to an ytterbium optical clock[J]. Photonics Research, 9, 98-105(2021).

    [10] Chang P Y, Shi H B, Miao J X et al. Frequency-stabilized Faraday laser with 10-14 short-term instability for atomic clocks[J]. Applied Physics Letters, 120, 141102(2022).

    [11] Hachisu H, Fujieda M, Nagano S et al. Direct comparison of optical lattice clocks with an intercontinental baseline of 9000 km[J]. Optics Letters, 39, 4072-4075(2014).

    [12] Pizzocaro M, Sekido M, Takefuji K et al. Intercontinental comparison of optical atomic clocks through very long baseline interferometry[J]. Nature Physics, 17, 223-227(2021).

    [13] Liu T, Liu J, Deng X et al. Research on fiber-based time and frequency transfer[J]. Journal of Time and Frequency, 39, 207-215(2016).

    [14] Wu G L, Chen J P. Ultra-long haul high-precison fiber-optic two way time transfer[J]. Science & Technology Review, 34, 99-103(2016).

    [15] Chen Y F, Wang B. Fiber-optic time and frequency synchronization technology and its applications[J]. Chinese Journal of Scientific Instrument, 45, 47-62(2024).

    [16] Predehl K, Grosche G, Raupach S M F et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 336, 441-444(2012).

    [17] Droste S, Ozimek F, Udem T et al. Optical frequency transfer over a single-span 1840 km fiber link[J]. Physical Review Letters, 111, 110801(2013).

    [18] Calonico D, Bertacco E K, Calosso C E et al. High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link[J]. Applied Physics B, 117, 979-986(2014).

    [19] Ma C Q, Wu L F, Jiang Y Y et al. Coherence transfer of subhertz-linewidth laser light via an 82-km fiber link[J]. Applied Physics Letters, 107, 261109(2015).

    [20] Feng Z T, Zhang X, Wu R et al. High-stability and multithreading phase-coherent receiver for simultaneous transfer of stabilized optical and radio frequencies[J]. Optics Letters, 44, 2418-2421(2019).

    [21] Liu J, Deng X, Zhang X et al. Progress of fiber-based optical frequency transfer in NTSC[J]. Journal of Time and Frequency, 44, 231-243(2021).

    [22] Quan H L, Xue W X, Zhao W Y et al. Progress of high-resolution fiber-based microwave frequency dissemination in NTSC[J]. Journal of Time and Frequency, 44, 255-265(2021).

    [23] Fermann M E, Lee K F, Li P et al. Precision frequency transfer with fiber frequency combs[J]. Frontiers in Physics, 10, 1005074(2022).

    [24] Yu D R, Chen Z Y, Zhang Y F et al. Microwave frequency transfer over 3000-km fiber based on optical frequency combs and active noise cancellation[J]. Physical Review Research, 6, 023005(2024).

    [25] Zang Q, Deng X, Cao Q et al. Ultra-stable optical frequency signal transfer in 210 km urban communication link[J]. Acta Optica Sinica, 37, 0706004(2017).

    [26] Yuan Y B, Wang B, Wang L J. Fiber-based joint time and frequency dissemination via star-shaped commercial telecommunication network[J]. Chinese Physics B, 26, 080601(2017).

    [27] Han D M, Wei W, Xie W L et al. High-precision fiber-optic time transfer with an unlimited compensation range[J]. Optics Letters, 48, 5943-5946(2023).

    [28] Gao H, Jiang T W, Li J H et al. Comparison of relay methods for long-distance radio frequency transmission[J]. Journal of Lightwave Technology, 42, 121-127(2024).

    [29] Amemiya M, Imae M, Fujii Y et al. Precise frequency comparison system using bidirectional optical amplifiers[J]. IEEE Transactions on Instrumentation and Measurement, 59, 631-640(2010).

    [30] Sliwczynski Ł, Kolodziej J. Bidirectional optical amplification in long-distance two-way fiber-optic time and frequency transfer systems[J]. IEEE Transactions on Instrumentation and Measurement, 62, 253-262(2013).

    [31] Zhang H, Wu G L, Li X W et al. Optical amplification for BTDM-SFSW-based time transfer[J]. Journal of Lightwave Technology, 35, 4337-4343(2017).

    [32] Zang Q, Deng X, Liu J et al. Optimization design for bidirectional Er-doped fiber amplifier used in long distance optical frequency transfer link[J]. Acta Optica Sinica, 37, 0306006(2017).

    [33] TIME-TRANSFER. Bi-directional EDFA[EB/OL]. https://www.time-transfer.com/productinfo/1175814.html

    [34] Fujieda M, Kumagai M, Gotoh T et al. Ultrastable frequency dissemination via optical fiber at NICT[J]. IEEE Transactions on Instrumentation and Measurement, 58, 1223-1228(2009).

    [35] Li X F, Liang S Y, Zhang S G. A method of digital phase compensation for time and frequency transfer via fiber[J]. Journal of Time and Frequency, 32, 115-119(2009).

    [36] Hendre A, Alachkar B, Boven P et al. Precise timescale, frequency, and time-transfer technology for the square kilometer array[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 8, 011022(2022).

    [37] Hu L, Tian X Y, Wu G L et al. Passive optical phase noise cancellation[J]. Optics Letters, 45, 4308-4311(2020).

    [38] Li Y, Hu J L, Pan Y et al. Secure two-way fiber-optic time transfer against sub-ns asymmetric delay attack with clock model-based detection and mitigation scheme[J]. IEEE Transactions on Instrumentation and Measurement, 72, 5502514(2023).

    [39] Li B, Xue Y R, Kong W C et al. High-precision optical fiber time and frequency transfer method based on wavelength division multiplexing[J]. Acta Optica Sinica, 43, 0706001(2023).

    [40] Huang R, Wu G L, Li H W et al. Fiber-optic radio frequency transfer based on passive phase noise compensation with frequency dividing and filtering[J]. Optics Letters, 41, 626-629(2016).

    [41] Fan G F, Li Y, Hu C G et al. A novel concept of acousto-optic ring frequency shifters on silicon-on-insulator technology[J]. Optics & Laser Technology, 63, 62-65(2014).

    [42] Yu Z J, Sun X K. Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform[J]. ACS Photonics, 8, 798-803(2021).

    [43] Williams P A, Swann W C, Newbury N R. High-stability transfer of an optical frequency over long fiber-optic links[J]. Journal of the Optical Society of America B, 25, 1284-1293(2008).

    [44] Arafin S, Simsek A, Kim S K et al. Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop[J]. Optics Express, 25, 681-695(2017).

    [45] Ashtiani F, Aflatouni F. Integrated electro-optical phase-locked loop for high resolution optical synthesis[J]. Optics Express, 25, 16171-16181(2017).

    [46] Balakier K, Ponnampalam L, Fice M J et al. Integrated semiconductor laser optical phase lock loops[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1500112(2018).

    [47] Akatsuka T, Goh T, Imai H et al. Optical frequency distribution using laser repeater stations with planar lightwave circuits[J]. Optics Express, 28, 9186-9197(2020).

    [48] Akiyama T. Tutorial on silicon photonics applications[C](2023).

    [49] Guo Y Y, Li X H, Jin M H et al. Hybrid integrated external cavity laser with a 172-nm tuning range[J]. APL Photonics, 7, 066101(2022).

    [50] Lu L J, Zhou L J, Sun X M et al. CMOS-compatible athermal tunable silicon optical lattice filters[C], OTu3C.4(2013).

    [51] Baets R, Subramanian A Z, Clemmen S et al. Silicon photonics: silicon nitride versus silicon-on-insulator[C], Th3J.1(2016).

    [52] Sacher W D, Huang Y, Lo G Q et al. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices[J]. Journal of Lightwave Technology, 33, 901-910(2015).

    [53] Li X, Lu L J, Chen J P et al. Power-efficient polarization-insensitive tunable microring filter on a multi-layer Si3N4-on-SOI platform[J]. Optics Letters, 48, 4861-4864(2023).

    [54] Qiu Z A, Hu L, Chen J P et al. A frequency shifting scheme for on-chip optical frequency transfer[C](2023).

    [55] Shieldst J, Goldberg H, Kiem J et al. Terrestrial attitude estimation for the formation control testbed (FCT)[C](2007).

    [56] Ebenhag S C, Jarlemark P, Emardson R et al. Time transfer over a 560 km fiber link[EB/OL]. https://research.chalmers.se/en/publication/88693

    [57] Smotlacha V, Kuna A, Mache W. Time transfer using fiber links[C](2010).

    [58] Rost M, Piester D, Yang W et al. Time transfer through optical fibres over a distance of 73 km with an uncertainty below 100 ps[J]. Metrologia, 49, 772-778(2012).

    [59] Krehlik P, Sliwczynski Ł, Buczek Ł et al. Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay[J]. IEEE Transactions on Instrumentation and Measurement, 61, 2844-2851(2012).

    [60] Lopez O, Kanj A, Pottie P E et al. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network[J]. Applied Physics B, 110, 3-6(2013).

    [61] Chen W, Liu Q, Cheng N et al. Joint time and frequency dissemination network over delay-stabilized fiber optic links[J]. IEEE Photonics Journal, 7, 7901609(2015).

    [62] Zhang H, Wu G L, Li H W et al. High-precision ultralong distance time transfer using single-fiber bidirectional-transmission unidirectional optical amplifiers[J]. IEEE Photonics Journal, 8, 7804408(2016).

    [63] Lin J P, Wang Z H, Lei Z T et al. Michelson interferometer based phase demodulation for stable time transfer over 1556 km fiber links[J]. Optics Express, 29, 14505-14512(2021).

    [64] Zuo F X, Xie K F, Hu L et al. 13134-km fiber-optic time synchronization[J]. Journal of Lightwave Technology, 39, 6373-6380(2021).

    [65] Guo X X, Hou B A, Liu B et al. Time transfer in a 1839-km telecommunication fiber link demonstrating a picosecond-scale stability[J]. Chinese Physics Letters, 41, 064202(2024).

    [66] Lopez O, Amy-Klein A, Daussy C et al. 86-km optical link with a resolution of 2×10-18 for RF frequency transfer[J]. The European Physical Journal D, 48, 35-41(2008).

    [67] Śliwczyński Ł, Krehlik P, Buczek Ł et al. Active propagation delay stabilization for fiber-optic frequency distribution using controlled electronic delay lines[J]. IEEE Transactions on Instrumentation and Measurement, 60, 1480-1488(2011).

    [68] Gao C, Wang B, Chen W L et al. Fiber-based multiple-access ultrastable frequency dissemination[J]. Optics Letters, 37, 4690-4692(2012).

    [69] Yu L Q, Wang R, Lu L et al. Stable radio frequency dissemination by simple hybrid frequency modulation scheme[J]. Optics Letters, 39, 5255-5258(2014).

    [70] Deng N, Liu Z, Wang X C et al. Distribution of a phase-stabilized 100.02 GHz millimeter-wave signal over a 160 km optical fiber with 4.1×10-17 instability[J]. Optics Express, 26, 339-346(2018).

    [71] Xue W X, Zhao W Y, Quan H L et al. Cascaded microwave frequency transfer over 300-km fiber link with instability at the 10-18 level[J]. Remote Sensing, 13, 2182(2021).

    [72] Gao H, Zhao B D, Zhao Z Z et al. Multi-nodes dissemination of stable radio frequency with 10-17 instability over 2000 km optical fiber[J]. Optics Express, 31, 25598-25612(2023).

    [73] Li Q, Hu L, Zhang J B et al. Photonic millimeter-wave transfer with balanced dual-heterodyne phase noise detection and cancellation[J]. Optics Express, 31, 28078-28088(2023).

    [74] Ma L S, Jungner P, Ye J et al. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path[J]. Optics Letters, 19, 1777-1779(1994).

    [75] Newbury N R, Williams P A, Swann W C. Coherent transfer of an optical carrier over 251 km[J]. Optics Letters, 32, 3056-3058(2007).

    [76] Lopez O, Haboucha A, Kéfélian F et al. Cascaded multiplexed optical link on a telecommunication network for frequency dissemination[J]. Optics Express, 18, 16849-16857(2010).

    [77] Lopez O, Haboucha A, Chanteau B et al. Ultra-stable long distance optical frequency distribution using the Internet fiber network[J]. Optics Express, 20, 23518-23526(2012).

    [78] Kim J, Schnatz H, Wu D S et al. Optical injection locking-based amplification in phase-coherent transfer of optical frequencies[J]. Optics Letters, 40, 4198-4201(2015).

    [79] Deng X, Liu J, Jiao D D et al. Coherent transfer of optical frequency over 112 km with instability at the 10-20 level[J]. Chinese Physics Letters, 33, 114202(2016).

    [80] Hu L, Lu L, Wu G et al. Silicon circuits for optical frequency transfer[C](2021).

    [81] Zang Q, Deng X, Zhang X et al. Cascaded transfer of optical frequency with a relay station over a 224 km deployed fiber link[J]. Infrared Physics & Technology, 128, 104511(2023).

    [82] Deng X, Zhang X, Zang Q et al. Coherent optical frequency transfer via 972-km fiber link[J]. Chinese Physics B, 33, 020602(2024).

    [83] Hu L, Wu G L, Shen J G et al. Distributed time transfer using optical fiber links[C], 889-891(2013).

    [84] Hu L, Tian X Y, Wu G L et al. Multi-node optical frequency dissemination with post automatic phase correction[J]. Journal of Lightwave Technology, 38, 3644-3651(2020).

    [85] Zuo F X, Chen Z F, Hu L et al. Multiple-node time synchronization over hybrid star and bus fiber network without requiring link calibration[J]. Journal of Lightwave Technology, 39, 2015-2022(2021).

    [86] Clivati C, Meda A, Donadello S et al. Coherent phase transfer for real-world twin-field quantum key distribution[J]. Nature Communications, 13, 157(2022).

    [87] Yu J Z, Xu P B, Yu Z J et al. Principles and applications of seismic monitoring based on submarine optical cable[J]. Sensors, 23, 5600(2023).

    [88] Zhang C B, Tang X Y, Wang G Q et al. Research frontier of communication and sensing integration technology for optical networks[J]. Laser & Optoelectronics Progress, 60, 0100001(2023).

    [89] Marra G, Fairweather D M, Kamalov V et al. Optical interferometry-based array of seafloor environmental sensors using a transoceanic submarine cable[J]. Science, 376, 874-879(2022).

    [90] Clivati C, Tampellini A, Mura A et al. Optical frequency transfer over submarine fiber links[J]. Optica, 5, 893-901(2018).

    [91] Bogris A, Nikas T, Simos C et al. Sensitive seismic sensors based on microwave frequency fiber interferometry in commercially deployed cables[J]. Scientific Reports, 12, 14000(2022).

    [92] Noe S, Husmann D, Müller N et al. Long-range fiber-optic earthquake sensing by active phase noise cancellation[J]. Scientific Reports, 13, 13983(2023).

    Jianping Chen, Tao Liu, B. M. A. Rahman, Liang Hu. High-Precision Fiber-Optic Time and Frequency Transfer and Device Integration (Invited)[J]. Acta Optica Sinica (Online), 2024, 1(2): 0204001
    Download Citation