• Nano-Micro Letters
  • Vol. 16, Issue 1, 247 (2024)
Weiliang Zhou1,†, Chao Feng1,2,†, Xuan Li1, Xingxing Jiang1..., Lingyan Jing1, Shuai Qi1, Qihua Huo1, Miaoyuan Lv1, Xinbao Chen1, Tianchi Huang1, Jingwen Zhao1, Na Meng1, Hengpan Yang1, Qi Hu1,* and Chuanxin He1,**|Show fewer author(s)
Author Affiliations
  • 1College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 Guangdong, People’s Republic of China
  • 2School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003 Xinjiang, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01462-w Cite this Article
    Weiliang Zhou, Chao Feng, Xuan Li, Xingxing Jiang, Lingyan Jing, Shuai Qi, Qihua Huo, Miaoyuan Lv, Xinbao Chen, Tianchi Huang, Jingwen Zhao, Na Meng, Hengpan Yang, Qi Hu, Chuanxin He. Boosting Electrochemical Urea Synthesis via Constructing Ordered Pd–Zn Active Pair[J]. Nano-Micro Letters, 2024, 16(1): 247 Copy Citation Text show less
    References

    [1] C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou et al., Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).

    [2] J. Li, Y. Zhang, K. Kuruvinashetti, N. Kornienko, Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    [3] X. Peng, L. Zeng, D. Wang, Z. Liu, Y. Li et al., Electrochemical C–N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem. Soc. Rev. 52, 2193–2237 (2023).

    [4] A.J. Martín, T. Shinagawa, J. Pérez-Ramírez, Electrocatalytic reduction of nitrogen: from Haber-Bosch to ammonia artificial leaf. Chem 5, 263–283 (2019).

    [5] Y. Zhao, Y. Ding, W. Li, C. Liu, Y. Li et al., Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu-W bimetallic C–N coupling sites. Nat. Commun. 14, 4491 (2023).

    [6] Y. Wang, S. Xia, J. Zhang, Z. Li, R. Cai et al., Spatial management of CO diffusion on tandem electrode promotes NH2 intermediate formation for efficient urea electrosynthesis. ACS Energy Lett. 8, 3373–3380 (2023).

    [7] C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan et al., Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).

    [8] M. Yuan, J. Chen, H. Zhang, Q. Li, L. Zhou et al., Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy Environ. Sci. 15, 2084–2095 (2022).

    [9] D. Wang, C. Chen, S. Wang, Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Sci. China Chem. 66, 1052–1072 (2023).

    [10] X. Zhang, X. Zhu, S. Bo, C. Chen, K. Cheng et al., Electrocatalytic urea synthesis with 63.5% faradaic efficiency and 100% N-Selectivity via one-step C–N coupling. Angew. Chem. Int. Ed. 62, e202305447 (2023).

    [11] Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal-organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023).

    [12] J. Leverett, T. Tran-Phu, J.A. Yuwono, P. Kumar, C. Kim et al., Tuning the coordination structure of Cu–N–C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3– to urea. Adv. Energy Mater. 12, 2201500 (2022).

    [13] X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie et al., Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 144, 11530–11535 (2022).

    [14] Q. Zhao, X. Lu, Y. Wang, S. Zhu, Y. Liu et al., Sustainable and high-rate electrosynthesis of nitrogen fertilizer. Angew. Chem. Int. Ed. 62, e20230712310 (2023).

    [15] T. Hou, J. Ding, H. Zhang, S. Chen, Q. Liu et al., FeNi3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate. Mater. Chem. Front. 7, 4952–4960 (2023).

    [16] M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang et al., Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts. Angew. Chem. Int. Ed. 60, 10910–10918 (2021).

    [17] Y. Liu, X. Tu, X. Wei, D. Wang, X. Zhang et al., C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angew. Chem. Int. Ed. 62, e202300387 (2023).

    [18] C. Lv, C. Lee, L. Zhong, H. Liu, J. Liu et al., A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. Nano Lett. 16, 8213–8222 (2022).

    [19] D. Wu, R. Feng, C. Xu, P.-F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14, 38 (2021).

    [20] B. Rhimi, M. Zhou, Z. Yan, X. Cai, Z. Jiang, Cu-based materials for enhanced C2+ product selectivity in photo-/ electro-catalytic CO2 reduction: challenges and prospects. Nano-Micro Lett. 16, 64 (2024).

    [21] X.-Y. Ji, K. Sun, Z.-K. Liu, X. Liu, W. Dong et al., Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Lett. 15, 110 (2023).

    [22] C.S. Gerke, Y. Xu, Y. Yang, G.D. Foley, B. Zhang et al., Electrochemical C–N bond formation within boron imidazolate cages featuring single copper sites. J. Am. Chem. Soc. 145, 26144–26151 (2023).

    [23] S. Chen, G. Qi, R. Yin, Q. Liu, L. Feng et al., Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale 15, 19577–19585 (2023).

    [24] R. He, N. Xu, I.M.U. Hasan, L. Peng, L. Li et al., Advances in electrolyzer design and development for electrochemical CO2 reduction. EcoMat. 5, e12346 (2023).

    [25] S. Zhang, J. Geng, Z. Zhao, M. Jin, W. Li et al., High-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst. EES. Catal. 1, 45–53 (2023).

    [26] N. Meng, X. Ma, C. Wang, Y. Wang, R. Yang et al., Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. Nano lett. 16, 9095–9104 (2022).

    [27] H. Wang, Y. Jiang, S. Li, F. Gou, X. Liu et al., Realizing efficient C–N coupling via electrochemical co-reduction of CO2 and NO3- on AuPd nanoalloy to form urea: key C–N coupling intermediates. Appl. Catal. B Environ. 318, 121819 (2022).

    [28] H. Wan, X. Wang, L. Tan, M. Filippi, P. Strasser et al., Electrochemical synthesis of urea: co-reduction of nitric oxide and carbon monoxide. ACS Catal. 13, 1926–1933 (2023).

    [29] X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S.-Z. Qiao, Mechanism of C–N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat. Commun. 13, 5471 (2022).

    [30] X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu et al., Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 13, 5337 (2022).

    [31] S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16, 9 (2023).

    [32] X. Rao, J. Yan, K. Yokoyama, X. Shao, C. Inoue et al., A porous Co3O4-carbon paper electrode enabling nearly 100% electrocatalytic reduction of nitrate to ammonia. Mater. Rep. Energy 3, 100216 (2023).

    [33] B. Xu, I.M.U. Hasan, L. Peng, J. Liu, N. Xu et al., Anion-regulation engineering toward Cu/In/MOF bimetallic electrocatalysts for selective electrochemical reduction of CO2 to CO/formate. Mater Rep Energy. 2, 100139 (2022).

    [34] L. Peng, C. Chen, R. He, N. Xu, J. Qiao et al., Tin-doped bismuth dendrites for highly efficient electrocatalytic reduction of CO2 by using bipolar membrane in ultrathin liquid reactor. EcoMat 4, e12260 (2022).

    [35] L. Peng, Y. Zhang, R. He, N. Xu, J. Qiao, Research advances in electrocatalysts, electrolytes, reactors and membranes for the electrocatalytic carbon dioxide reduction reaction. Acta Phys. Chim. Sin. (2023).

    [36] J. Yan, Y. Guan, B. Marchetti, Y. Liu, F. Ning et al., Bi-Eu bimetallic catalysts enabling ultrastable electroreduction of CO2 with a ∼ 100% formate Faradaic efficiency. Chem. Eng. J. 467, 143531 (2023).

    [37] M. Yang, G. Meng, H. Li, T. Wei, Q. Liu et al., Bifunctional bimetallic oxide nanowires for high-efficiency electrosynthesis of 2, 5-furandicarboxylic acid and ammonia. J. Colloid Interface Sci. 652, 155–163 (2023).

    [38] Y. Ji, Z. Chen, R. Wei, C. Yang, Y. Wang et al., Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).

    [39] J. Geng, S. Ji, M. Jin, C. Zhang, M. Xu et al., Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew. Chem. Int. Ed. 62, e202210958 (2023).

    [40] Y. Li, Y. Li, H. Sun, L. Gao, X. Jin et al., Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nano-Micro Lett. 16, 139 (2024).

    [41] C.-L. Yang, L.-N. Wang, P. Yin, J. Liu, M.-X. Chen et al., Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    [42] Y. Yang, W. Xiao, X. Feng, Y. Xiong, M. Gong et al., Golden palladium zinc ordered intermetallics as oxygen reduction electrocatalysts. Nano Lett. 13, 5968–5974 (2019).

    [43] W. Xiao, M.A.L. Cordeiro, G. Gao, A. Zheng, J. Wang et al., Atomic rearrangement from disordered to ordered Pd–Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy 50, 70–78 (2018).

    [44] Q. Gao, B. Yao, H.S. Pillai, W. Zang, X. Han et al., Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. Nat. Synth. 2, 624–634 (2023).

    [45] J. Lim, C.-Y. Liu, J. Park, Y.-H. Liu, T.P. Senftle et al., Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal. 11, 7568–7577 (2021).

    [46] W. Luo, J. Zhang, M. Li, A. Züttel, Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catal. 9, 3783–3791 (2019).

    [47] J. Rosen, G.S. Hutchings, Q. Lu, R.V. Forest, A. Moore et al., Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal. 5, 4586–4591 (2015).

    [48] Y. Guo, R. Zhang, S. Zhang, Y. Zhao, Q. Yang et al., Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc–nitrate batteries. Energy Environ. Sci. 14, 3938–3944 (2021).

    [49] M. Hu, S. Zhao, S. Liu, C. Chen, W. Chen et al., MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Adv. Mater. 30, e1801878 (2018).

    [50] X. Tu, X. Zhu, S. Bo, X. Zhang, R. Miao et al., A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface. Angew. Chem. Int. Ed. 63, e202317087 (2024).

    [51] Y. Huang, Y. Wang, Y. Liu, A. Ma, J. Gui et al., Unveiling the quantification minefield in electrocatalytic urea synthesis. Chem. Eng. J. 453, 139836 (2023).

    [52] Q. Hu, K. Gao, X. Wang, H. Zheng, J. Cao et al., Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 13, 3958 (2022).

    [53] D. Zhang, Y. Xue, X. Zheng, C. Zhang, Y. Li, Multi-heterointerfaces for selective and efficient urea production. Natl. Sci. Rev. 10, nwac209 (2022).

    [54] S. Zhu, B. Jiang, W.-B. Cai, M. Shao, Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

    [55] Y. Huang, R. Yang, C. Wang, N. Meng, Y. Shi et al., Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 7, 284–291 (2022).

    [56] N. Meng, Y. Huang, Y. Liu, Y. Yu, B. Zhang, Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. 2, 100378 (2021).

    [57] M. Sun, G. Wu, J. Jiang, Y. Yang, A. Du et al., Carbon-anchored molybdenum oxide nanoclusters as efficient catalysts for the electrosynthesis of ammonia and urea. Angew. Chem. Int. Ed. 62, e202301 957 (2023).

    [58] M. Yuan, H. Zhang, Y. Xu, R. Liu, R. Wang et al., Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem Catal. 2, 309–320 (2022).

    [59] X. Liu, P.V. Kumar, Q. Chen, L. Zhao, F. Ye et al., Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl. Catal. B Environ. 316, 121618 (2022).

    [60] M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang et al., Electrochemical C–N coupling with perovskite hybrids toward efficient urea synthesis. Chem. Sci. 12, 6048–6058 (2021).

    [61] Q. Hu, Y. Qin, X. Wang, Z. Wang, X. Huang et al., Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate–ammonia conversion. Energy Environ. Sci. 14, 4989–4997 (2021).

    [62] Z. Chen, T. Wang, B. Liu, D. Cheng, C. Hu et al., Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J. Am. Chem. Soc. 142, 6878–6883 (2020).

    Weiliang Zhou, Chao Feng, Xuan Li, Xingxing Jiang, Lingyan Jing, Shuai Qi, Qihua Huo, Miaoyuan Lv, Xinbao Chen, Tianchi Huang, Jingwen Zhao, Na Meng, Hengpan Yang, Qi Hu, Chuanxin He. Boosting Electrochemical Urea Synthesis via Constructing Ordered Pd–Zn Active Pair[J]. Nano-Micro Letters, 2024, 16(1): 247
    Download Citation