• Nano-Micro Letters
  • Vol. 16, Issue 1, 087 (2024)
Qian Wang1,2, Yanyan Li1,2, Yong Lin1,2, Yuping Sun1,2..., Chong Bai1,2, Haorun Guo3, Ting Fang1,2, Gaohua Hu1,2, Yanqing Lu1,4,* and Desheng Kong1,2,**|Show fewer author(s)
Author Affiliations
  • 1College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
  • 2State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, People’s Republic of China
  • 3College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, People’s Republic of China
  • 4Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01314-z Cite this Article
    Qian Wang, Yanyan Li, Yong Lin, Yuping Sun, Chong Bai, Haorun Guo, Ting Fang, Gaohua Hu, Yanqing Lu, Desheng Kong. A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics[J]. Nano-Micro Letters, 2024, 16(1): 087 Copy Citation Text show less
    References

    [1] J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    [2] S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016).

    [3] Z. Ma, D. Kong, L. Pan, Z. Bao, Skin-inspired electronics: emerging semiconductor devices and systems. J. Semicond. 41, 041601 (2020).

    [4] D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333, 838–843 (2011).

    [5] J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019).

    [6] H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    [7] G.H. Lee, H. Woo, C. Yoon, C. Yang, J.Y. Bae et al., A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically conductive and durable liquid-metal composite. Adv. Mater. 34, e2204159 (2022).

    [8] S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8, eabl5511 (2022).

    [9] H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    [10] M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020).

    [11] H. Zhao, Y. Zhou, S. Cao, Y. Wang, J. Zhang et al., Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human–machine interfaces. ACS Mater. Lett. 3, 912–920 (2021).

    [12] A. Chortos, G.I. Koleilat, R. Pfattner, D. Kong, P. Lin et al., Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016).

    [13] J. Zhang, X. Liu, W. Xu, W. Luo, M. Li et al., Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 18, 2903–2911 (2018).

    [14] N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba et al., Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    [15] Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su et al., Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    [16] F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012).

    [17] S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    [18] J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817–824 (2013).

    [19] D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    [20] W. Guo, P. Zheng, X. Huang, H. Zhuo, Y. Wu et al., Matrix-independent highly conductive composites for electrodes and interconnects in stretchable electronics. ACS Appl. Mater. Interfaces 11, 8567–8575 (2019).

    [21] C. Ding, J. Wang, W. Yuan, X. Zhou, Y. Lin et al., Durability study of thermal transfer printed textile electrodes for wearable electronic applications. ACS Appl. Mater. Interfaces 14, 29144–29155 (2022).

    [22] W.H. Yeo, Y.S. Kim, J. Lee, A. Ameen, L. Shi et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2773–2778 (2013).

    [23] S. Liu, Y. Rao, H. Jang, P. Tan, N. Lu, Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022).

    [24] Q. Tian, H. Zhao, X. Wang, Y. Jiang, M. Zhu et al., Hairy-skin-adaptive viscoelastic dry electrodes for long-term electrophysiological monitoring. Adv. Mater. 35, e2211236 (2023).

    [25] C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.H. Sunwoo et al., Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7, eabd3716 (2021).

    [26] H. Jin, N. Matsuhisa, S. Lee, M. Abbas, T. Yokota et al., Enhancing the performance of stretchable conductors for E-textiles by controlled ink permeation. Adv. Mater. 29, 1605848 (2017).

    [27] K.-I. Jang, S.Y. Han, S. Xu, K.E. Mathewson, Y. Zhang et al., Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014).

    [28] Y. Zhou, C. Zhao, J. Wang, Y. Li, C. Li et al., Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 1, 511–518 (2019).

    [29] O. Wichterle, D. Lím, Hydrophilic gels for biological use. Nature 185, 117–118 (1960).

    [30] P.C. Nicolson, J. Vogt, Soft contact lens polymers: an evolution. Biomaterials 22, 3273–3283 (2001).

    [31] Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021).

    [32] S.O. Blacklow, J. Li, B.R. Freedman, M. Zeidi, C. Chen et al., Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 5, eaaw3963 (2019).

    [33] J. Li, A.D. Celiz, J. Yang, Q. Yang, I. Wamala et al., Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017).

    [34] S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture. Nat. Meth. 13, 405–414 (2016).

    [35] N. Peppas, J. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    [36] J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    [37] L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35, 2205326 (2023).

    [38] H. Yuk, J. Wu, X. Zhao, Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    [39] L. Han, L. Yan, K. Wang, L. Fang, H. Zhang et al., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater. 9, e372 (2017).

    [40] C. Xie, X. Wang, H. He, Y. Ding, X. Lu, Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv. Funct. Mater. 30, 1909954 (2020).

    [41] G. Tian, D. Yang, C. Liang, Y. Liu, J. Chen et al., A nonswelling hydrogel with regenerable high wet tissue adhesion for bioelectronics. Adv. Mater. 35, e2212302 (2023).

    [42] J. Tang, J. Li, J.J. Vlassak, Z. Suo, Adhesion between highly stretchable materials. Soft Matter 12, 1093–1099 (2016).

    [43] Q. Liu, G. Nian, C. Yang, S. Qu, Z. Suo, Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 9, 846 (2018).

    [44] J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30, 1901693 (2020).

    [45] K. Tian, J. Bae, Z. Suo, J.J. Vlassak, Adhesion between hydrophobic elastomer and hydrogel through hydrophilic modification and interfacial segregation. ACS Appl. Mater. Interfaces 10, 43252–43261 (2018).

    [46] H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

    [47] S.H. Kim, S. Jung, I.S. Yoon, C. Lee, Y. Oh et al., Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv. Mater. 30, e1800109 (2018).

    [48] D. Wirthl, R. Pichler, M. Drack, G. Kettlguber, R. Moser et al., Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 3, e1700053 (2017).

    [49] M. Zhu, F. Zhang, X. Chen, Bioinspired mechanically interlocking structures. Small Struct. 1, 2000045 (2020).

    [50] C.W. Jennings, Surface roughness and bond strength of adhesives. J. Adhes. 4, 25–38 (1972).

    [51] S. Pan, F. Zhang, P. Cai, M. Wang, K. He et al., Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30, 1909540 (2020).

    [52] T. Kurokawa, H. Furukawa, W. Wang, Y. Tanaka, J.P. Gong, Formation of a strong hydrogel–porous solid interface via the double-network principle. Acta Biomater. 6, 1353–1359 (2010).

    [53] Y. Lin, L. Wang, T. Ma, L. Ding, S. Cao et al., Highly conductive and compliant silver nanowire nanocomposites by direct spray deposition. ACS Appl. Mater. Interfaces 14, 57290–57298 (2022).

    [54] T.B. Tierney, Å.C. Rasmuson, S.P. Hudson, Size and shape control of micron-sized salicylic acid crystals during antisolvent crystallization. Org. Process Res. Dev. 21, 1732–1740 (2017).

    [55] Y. Li, S. Wang, J. Zhang, X. Ma, S. Cao et al., A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl. Mater. Interfaces 14, 13713–13721 (2022).

    [56] C.-W. Tsao, D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6, 1–16 (2009).

    [57] Y. Zhou, S. Cao, J. Wang, H. Zhu, J. Wang et al., Bright stretchable electroluminescent devices based on silver nanowire electrodes and high-k thermoplastic elastomers. ACS Appl. Mater. Interfaces 10, 44760–44767 (2018).

    [58] L. Mou, J. Qi, L. Tang, R. Dong, Y. Xia et al., Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small 16, e2005336 (2020).

    [59] S. Trasatti, O.A. Petrii, Real surface area measurements in electrochemistry. J. Electroanal. Chem. 327, 353–376 (1992).

    [60] D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136, 4897–4900 (2014).

    [61] H. Jung, M.K. Kim, J.Y. Lee, S.W. Choi, J. Kim, Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv. Funct. Mater. 30, 2004407 (2020).

    [62] L. Wang, N. Lu, Conformability of a thin elastic membrane laminated on a soft substrate with slightly wavy surface. J. Appl. Mech. 83, 041007 (2016).

    [63] N. Isakadze, S.S. Martin, How useful is the smartwatch ECG? Trends Cardiovasc. Med. 30, 442–448 (2020).

    [64] J.M. Kwon, Y. Cho, K.H. Jeon, S. Cho, K.H. Kim et al., A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study. Lancet Digit. Health 2, e358–e367 (2020).

    Qian Wang, Yanyan Li, Yong Lin, Yuping Sun, Chong Bai, Haorun Guo, Ting Fang, Gaohua Hu, Yanqing Lu, Desheng Kong. A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics[J]. Nano-Micro Letters, 2024, 16(1): 087
    Download Citation