[1] Duntley S Q. Light in the Sea[J]. Journal of the Optical Society of America, 53, 214-233(1963).
[2] Wiener T, Karp S. The Role of Blue/green Laser Systems in Strategic Submarine Communications[J]. IEEE Transactions on Communications, 28, 1602-1607(1980).
[3] Marling J B, Nilsen J, West L C et al. Advanced Blue-green Electro-optics: Very Narrow Bandwidth, Wide Field-of-view Detector[R](1977).
[4] Bales J W. High Bandwidth Low Power Short-range Optical Communication in Underwater[J]. Proc. of Unmaned Unthethered Submergible Technology, 9, 406-415(1995).
[5] Tivey M, Fucile P, Sichel E. A Low Power, Low Cost, Underwater Optical Communication System[J]. Ridge 2000 Events, 2, 27-29(2004).
[6] Zhou T H, Hu S Q, Mi L et al. A Long-distance Underwater Laser Communication System with Photon-counting Receiver[C], 8121569(2017).
[7] Hu S Q, Mi L, Zhou T H et al. 35.88 Attenuation Lengths and 3.32 bits/photon Underwater Optical Wireless Communication based on Photon-counting Receiver with 256-PPM[J]. Optics Express, 26, 21685-21699(2018).
[8] Liu X Y, Yi S Y, Zhou X L et al. 34.5 m Underwater Optical Wireless Communication with 2.70 Gbps Data Rate based on a Green Laser Diode with NRZ-OOK Modulation[J]. Optics Express, 25, 27937-27947(2017).
[9] Fei C, Hong X J, Zhang G W et al. 16.6 Gbps Data Rate for Underwater Wireless Optical Transmission with Single Laser Diode Achieved with Discrete Multi-tone and Post Nonlinear Equalization[J]. Optics Express, 26, 34060-34069(2018).
[10] Wang J M, Lu C H, Li S B et al. 100 m/500 Mbps Underwater Optical Wireless Communication Using an NRZ-OOK Modulated 520 nm Laser Diode[J]. Optics Express, 27, 12171-12181(2019).
[11] Chen X, Yang X Q, Tong Z J et al. 150 m/500 Mbps Underwater Wireless Optical Communication enabled by Sensitive Detection and the Combination of Receiver-side Partial Response Shaping and TCM Technology[J]. Journal of Lightwave Technology, 39, 4614-4621(2021).
[12] Dai Y Z, Chen X, Yang X Q et al. 200-m/500-Mbps Underwater Wireless Optical Communication System Utilizing a Sparse Nonlinear Equalizer with a Variable Step Size Generalized Oorthogonal Matching Pursuit[J]. Optics Express, 29, 32228-32243(2021).
[13] Fei C, Wang Y, Du J et al. 100-m/3-Gbps Underwater Wireless Optical Transmission Using a Wideband Photomultiplier Tube (PMT)[J]. Optics Express, 30, 2326-2337(2022).
[14] Zhang L, Tang X, Sun C et al. Over 10 Attenuation Length Gigabits per Second Underwater Wireless Optical Communication Using a Silicon Photomultiplier (SiPM) based Receiver[J]. Optics Express, 28, 24968-24980(2020).
[15] Tokode O, Prabhu R, Lawton L A et al. UV LED Sources for Heterogeneous Photocatalysis[J]. Environmental Photochemistry Part III, 35, 159-180(2015).
[16] Zeng Z. A Survey of Underwater Wireless Optical Communication[D](2015).
[17] Wu J. Research and Implementation of Underwater Wireless Optical Communication Systems[D](2014).
[18] Chi N[M]. LED Visible Light Communication Technology(2013).
[19] Doniec M, Vasilescu I, Chitre M et al. AquaOptical: A Lightweight Device for High-rate Long-range Underwater Point-to-point Communication[C], 5422200(2009).
[20] Arvanitakis G N, Bian R, McKendry J J D et al. Gb/s Underwater Wireless Optical Communications Using Series-connected GaN Micro-LED Arrays[J]. IEEE Photonics Journal, 12, 2959656(2020).
[21] Zafar F, Bakaul M, Parthiban R. Laser-diode-based Visible Light Communication: Toward Gigabit Class Communication[J]. IEEE Communications Magazine, 55, 144-151(2017).
[22] Chen X, Lü W C, Zhang Z J et al. 56-m/3.31-Gbps Underwater Wireless Optical Communication Employing Nyquist Single Carrier Frequency Domain Equalization with Noise Prediction[J]. Optics Express, 28, 23784-23795(2020).
[23] Lu H H, Li C Y, Lin H H et al. An 8 m/9.6 Gbps Underwater Wireless Optical Communication System[J]. IEEE Photonics Journal, 8, 2601778(2016).
[24] Li C Y, Lu H H, Tsai W S et al. A 5 m/25 Gbps Underwater Wireless Optical Communication System[J]. IEEE Photonics Journal, 10, 2842762(2018).
[25] Tian P F, Liu X Y, Yi S Y et al. High-speed Underwater Optical Wireless Communication Using a Blue GaN-based Micro-LED[J]. Optics Express, 25, 1193-1201(2017).
[26] Cossu G, Sturniolo A, Messa A et al. Full-fledged 10Base-T Ethernet Underwater Optical Wireless Communication System[J]. IEEE Journal on Selected Areas in Communications, 36, 194-202(2018).
[27] Han B, Zhao W, Zheng Y Q et al. Experimental Demonstration of Quasi-omni-directional Transmitter for Underwater Wireless Optical Communication based on Blue LED Array and Freeform Lens[J]. Optics Communications, 434, 184-190(2019).
[28] Tsai C L, Lu Y C, Chang S H. InGaN LEDs Fabricated with Parallel-connected Multi-pixel Geometry for Underwater Optical Communications[J]. Optics & Laser Technology, 118, 69-74(2019).
[29] Hu F C, Li G Q, Zou P et al. 20.09-Gbit/s Underwater WDM-VLC Transmission based on a Single Si/GaAs-substrate Multichromatic LED Array Chip[C], 19629533(2020).
[30] Yang X, Tong Z, Zhang H et al. 7-m/130-Mbps LED-to-LED Underwater Wireless Optical Communication based on Arrays of Series-connected LEDs and a Coaxial Lens Group[J]. Journal of Lightwave Technology, 40, 5901-5909(2022).
[31] Li C Y, Lu H H, Tsai W S et al. 16 Gb/s PAM4 UWOC System based on 488-nm LD with Light Injection and Optoelectronic Feedback Techniques[J]. Optics Express, 25, 11598-11605(2017).
[32] Wu T C, Chi Y C, Wang H Y et al. Blue Laser Diode Enables Underwater Communication at 12.4 Gbps[J]. Scientific Reports, 7, srep40480(2017).
[33] Huang Y F, Tsai C T, Chi Y C et al. Filtered Multicarrier OFDM Encoding on Blue Laser Diode for 14.8 Gbps Seawater Transmission[J]. Journal of Lightwave Technology, 36, 1739-1745(2017).
[34] Fei C, Zhang J, Zhang G et al. Demonstration of 15 m 7.33-Gb/s 450-nm Underwater Wireless Optical Discrete Multitone Transmission Using Post Nonlinear Equalization[J]. Journal of Lightwave Technology, 36, 728-734(2018).
[35] Wang J J, Tian C F, Yang X H et al. Underwater Wireless Optical Communication System Using a 16-QAM Modulated 450-nm Laser Diode based on an FPGA[J]. Applied Optics, 58, 4553-4559(2019).
[36] Hong X J, Fei C, Zhang G W et al. Discrete Multitone Transmission for Underwater Optical Wireless Communication System Using Probabilistic Constellation Shaping to Approach Channel Capacity Limit[J]. Optics Letters, 44, 558-561(2019).
[37] Chen H L, Chen X W, Lu J et al. Toward Long-distance Underwater Wireless Optical Communication based on a High-sensitivity Single Photon Avalanche Diode[J]. IEEE Photonics Journal, 12, 2985205(2020).
[38] Ishibashi S, Susuki K I. 1 Gbps×100 m Underwater Optical Wireless Communication Using Laser Module in Deep Sea[C], 9976975(2022).
[39] Ali A H, Kadhim S A, Azzawi H M. Next Generation UWOC System based on MIMO and QAM-OFDM Modulation Techniques[C], 8684207(2018).
[40] Priyalakshmi B, Mahalakshmi K. Channel Estimation and Error Correction for UWOC System with Vertical Non-line-of-sight Channel[J]. Wireless Networks, 26, 4985-4997(2020).
[41] Xu J, Lin A, Yu X Y et al. Underwater Laser Communication Using an OFDM-modulated 520-nm Laser Diode[J]. IEEE Photonics Technology Letters, 28, 2133-2136(2016).
[42] Retamal J R D, Oubei H M, Janjua B et al. 4-Gbit/s Visible Light Communication Link based on 16-QAM OFDM Transmission over Remote Phosphor-film Converted White Light by Using Blue Laser Diode[J]. Optics Express, 23, 33656-33666(2015).
[43] Chi Y C, Hsieh D H, Tsai C T et al. 450-nm GaN Laser Diode Enables High-speed Visible Light Communication with 9-Gbps QAM-OFDM[J]. Optics Express, 23, 13051-13059(2015).
[44] Suzuki K, Yahata M, Kato M et al. 16APSK/16QAM-OFDM 3.2 Gbps RF Signal Direct-processing Transmitter and Receiver Communication Experiments Using WINDS Satellte[J]. IEICE Technical Report. Satellite Telecommunications, 115, 137-140(2015).
[45] Zhang L, Wang H, Shao X P. Improvedm- QAM-OFDM Transmission for Underwater Wireless Optical Communications[J]. Optics Communications, 423, 180-185(2018).
[46] Wang J L, Yang X Q, Lv W C et al. Underwater Wireless Optical Communication based on Multi-pixel Photon Counter and OFDM Modulation[J]. Optics Communications, 451, 181-185(2019).
[47] Guo Y, Wang X, Fu M. QAM–OFDM Transmission in Underwater Wireless Optical Communication System with Limited Resolution DAC[J]. Optical and Quantum Electronics, 52, 419-428(2020).
[48] Zhou Z H, Guan W P, Wen S S. Recognition and Evaluation of Constellation Diagram Using Deep Learning based on Underwater Wireless Optical Communication[DB/OL].
[49] Scholz T. Laser based Underwater Communication Experiments in the Baltic Sea[C], 8493174(2018).
[50] Xu J, Song Y H, Yu X Y et al. Underwater Wireless Transmission of High-speed QAM-OFDM Signals Using a Compact Red-light Laser[J]. Optics Express, 24, 8097-8109(2016).
[51] Tian P, Chen H, Wang P et al. Absorption and Scattering Effects of Maalox, Chlorophyll, and Sea Salt on a Micro-LED-based Underwater Wireless Optical Communication[J]. Chinese Optics Letters, 17, 100010(2019).
[52] Sait M, Sun X B, Alkhazragi O et al. The Effect of Turbulence on NLOS Underwater Wireless Optical Communication Channels[J]. Chinese Optics Letters, 17, 100013(2019).
[53] Sahoo R, Sahu S K, Shanmugam P. Estimation of the Channel Characteristics of a Vertically Downward Optical Wireless Communication Link in Realistic Oceanic Waters[J]. Optics & Laser Technology, 116, 144-154(2019).
[54] Tsai W S, Lu H H, Wu H W et al. 500 Gb/s PAM4 FSO-UWOC Convergent System with a R/G/B Five-wavelength Polarization-multiplexing Scheme[J]. IEEE Access, 8, 16913-16921(2020).
[55] Li S, Yang L, da Costa D B et al. Performance Analysis of Mixed RF-UWOC Dual-hop Transmission Systems[J]. IEEE Transactions on Vehicular Technology, 69, 14043-14048(2020).
[56] Stojanovic M. Recent Advances in High-speed Underwater Acoustic Communications[J]. IEEE Journal of Oceanic Engineering, 21, 125-136(1996).
[57] Kodama T, Sanusi M A B A, Kobori F et al. Comprehensive Analysis of Time-domain Hybrid PAM for Data-rate and Distance Adaptive UWOC System[J]. IEEE Access, 9, 57064-57074(2021).
[58] Kong M W, Lü W C, Ali T et al. 10-m 9.51-Gb/s RGB Laser Diodes-based WDM Underwater Wireless Optical Communication[J]. Optics Express, 25, 20829-20834(2017).
[59] Zhang C, Yang X Q, Zou H W et al. 9.14-Mbps 64-PPM UWOC System based on a Directly Modulated MOPA with Pre-pulse Shaping and a High-sensitivity PMT with Analog Demodulation[J]. Optics Express, 30, 30233-30245(2022).
[60] Cheng Y, Yang X, Zhang Y et al. 50 m/187.5 Mbit/s Real-time Underwater Wireless Optical Communication based on Optical Superimposition[J]. Chinese Optics Letters, 21, 020601(2023).
[61] Chen Y, Kong M, Ali T et al. 26 m/5.5 Gbps Air-water Optical Wireless Communication based on an OFDM-modulated 520-nm Laser Diode[J]. Optics Express, 25, 14760-14765(2017).
[62] Sun X B, Kong M W, Alkhazragi O et al. Non-line-of-sight Methodology for High-speed Wireless Optical Communication in Highly Turbid Water[J]. Optics Communications, 461, 125264(2020).
[63] Cossu G, Sturniolo A, Messa A et al. Sea-trial of Optical Ethernet Modems for Underwater Wireless Communications[J]. Journal of Lightwave Technology, 36, 5371-5380(2018).
[64] Farr N, Ware J, Pontbriand C et al. Optical Communication System Expands CORK Seafloor Observatory's Bandwidth[C], 5663951(2010).
[65] Hansen J, Fourie D, Kinsey J C et al. Autonomous Acoustic-aided Optical Localization for Data Transfer[C], 7401982(2015).
[66] Leon P, Roland F, Brignone L et al. A New Underwater Optical Modem based on Highly Sensitive Silicon Photomultipliers[C], 8084586(2017).
[67] Sawa T, Nishimura N, Tojo K et al. Practical Performance and Prospect of Underwater Optical Wireless Communication[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 102, 156-167(2019).