• Optical Instruments
  • Vol. 42, Issue 2, 64 (2020)
Dongdong YUE and Guanjun YOU*
Author Affiliations
  • School of Optical-Electronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2020.02.011 Cite this Article
    Dongdong YUE, Guanjun YOU. Study on scattering-type terahertz scanning near-field optical microscopy[J]. Optical Instruments, 2020, 42(2): 64 Copy Citation Text show less
    References

    [1] ABBE E. Gesammelte abhlungen III[M]. Jena: B, 1906.

    [2] LAHRECH A, BACHELOT R, GLEYZES P. Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600[J]. Optics Letters, 21, 1315-1317(1996).

    [3] KNOLL B, KEILMANN F, KRAMER A. Contrast of microwave near-field microscopy[J]. Applied Physics Letters, 70, 2667-2669(1997).

    [4] HUBER A J, KEILMANN F, WITTBORN J. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices[J]. Nano Letters, 8, 3766-3770(2008).

    [5] MOON K, DO Y, LIM M. Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes[J]. Applied Physics Letters, 101, 011109(2012).

    [6] MOON K, PARK H, KIM J. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy[J]. Nano Letters, 15, 549-552(2015).

    [7] DEAN P, MITROFANOV O, KEELEY J. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser[J]. Applied Physics Letters, 108, 091113(2016).

    [8] KUSCHEWSKI F, VON RIBBECK H G, DÖRING J. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz[J]. Applied Physics Letters, 108, 113102(2016).

    [9] DEGL’INNOCENTI R, WALLIS R, WEI B B. Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser[J]. ACS Photonics, 4, 2150-2157(2017).

    [10] LIEWALD C, MASTEL S, HESLER J. All-electronic terahertz nanoscopy[J]. Optica, 5, 159-163(2018).

    [11] KNOLL B, KEILMANN F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy[J]. Optics Communications, 182, 321-328(2000).

    [12] CHEN H T, KERSTING R, CHO G C. Terahertz imaging with nanometer resolution[J]. Applied Physics Letters, 83, 3009-3011(2003).

    [13] HALL J E, WIEDERRECHT G P, GRAY S K. Heterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells[J]. Optics Express, 15, 4098-4105(2007).

    [14] HAEflIGER D, PLITZKO J M, HILLENBRAND R. Contrast and scattering efficiency of scattering-type near-field optical probes[J]. Applied Physics Letters, 85, 4466-4468(2004).

    [15] HUTH F, CHUVILIN A, SCHNELL M. Resonant antenna probes for tip-enhanced infrared near-field microscopy[J]. Nano Letters, 13, 1065-1072(2013).

    [16] GOMEZ L, BACHELOT R, BOUHELIER A. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches[J]. Journal of the Optical Society of America B, 23, 823-833(2006).

    CLP Journals

    [1] ZHOU Qiangguo, HUANG Zhiming. ReviewofResearchandApplicationofTerahertzImagingTechnology[J]. Infrared Technology, 2022, 44(4): 328