• Ultrafast Science
  • Vol. 3, Issue 1, 0004 (2023)
Adam M. Summers1,2,†, Stefano Severino1,†, Maurizio Reduzzi1, Themistoklis P. H. Sidiropoulos1..., Daniel E. Rivas1,3, Nicola Di Palo1, Hung-Wei Sun1, Ying-Hao Chien1, Iker León1, Bárbara Buades1, Seth L. Cousin1, Stephan M. Teichmann1, Tobias Mey4, Klaus Mann4, Barbara Keitel5, Elke Plönjes5, Dmitri K. Efetov1, Heinrich Schwoerer6 and Jens Biegert1,7,*|Show fewer author(s)
Author Affiliations
  • 1ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
  • 2Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • 3European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany.
  • 4Institut für Nanophotonik Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany.
  • 5Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany.
  • 6Max-Planck-Institut für Struktur und Dynamik der Materie, 22761 Hamburg, Germany.
  • 7ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
  • show less
    DOI: 10.34133/ultrafastscience.0004 Cite this Article
    Adam M. Summers, Stefano Severino, Maurizio Reduzzi, Themistoklis P. H. Sidiropoulos, Daniel E. Rivas, Nicola Di Palo, Hung-Wei Sun, Ying-Hao Chien, Iker León, Bárbara Buades, Seth L. Cousin, Stephan M. Teichmann, Tobias Mey, Klaus Mann, Barbara Keitel, Elke Plönjes, Dmitri K. Efetov, Heinrich Schwoerer, Jens Biegert. Realizing Attosecond Core-Level X-ray Spectroscopy for the Investigation of Condensed Matter Systems[J]. Ultrafast Science, 2023, 3(1): 0004 Copy Citation Text show less
    References

    [1] Adler R, Kang C-J, Yee C-H, Kotliar G. Correlated materials design: Prospects and challenges. Rep Prog Phys. 2019;82:012504.

    [2] Schaibley JR, Yu H, Clark G, Rivera P, Ross JS, Seyler KL, Yao W, Xu X. Valleytronics in 2D materials. Nat Rev Mater. 2016;1:16055.

    [3] Ahmed S, Yi J. Two-dimensional transition metal dichalcogenides and their charge carrier Mobilities in field-effect transistors. Nanomicro Lett. 2017;9:50.

    [4] Keimer B, Moore JE. The physics of quantum materials. Nat Phys. 2017;13:1045–1055.

    [5] Powell JR. The quantum limit to Moore’s law. Proc IEEE. 2008;96:1247–1248.

    [6] Markov IL. Limits on fundamental limits to computation. Nature. 2014;512:147–154.

    [7] Stöhr J. NEXAFS Spectroscopy. Heidelberg (Germany): Springer Berlin; 1992. Vol. 25.

    [8] de Groot F, Kotani A, Core level spectroscopy of solids. Boca Raton (FL): CRC Press; 2008.

    [9] Bunker G, Introduction to XAFS: A practical guide to x-ray absorption fine structure spectroscopy. Cambridge (UK): Cambridge University Press; 2010.

    [10] Cousin SL, Silva F, Teichmann S, Hemmer M, Buades B, Biegert J. High-flux table-top soft x-ray source driven by sub-2-cycle, CEP stable, 1.85-μm 1-kHz pulses for carbon K-edge spectroscopy. Opt Lett. 2014;39:5383–5386.

    [11] Schoenlein RW, Chattopadhyay S, Chong HHW, Glover TE, Heimann PA, Shank CV, Zholents AA, Zolotorev MS. Generation of femtosecond pulses of synchrotron radiation. Science. 2000;287:2237–2240.

    [12] Maroju PK, Grazioli C, Di Fraia M, Moioli M, Ertel D, Ahmadi H, Plekan O, Finetti P, Allaria E, Giannessi L, et al. Attosecond pulse shaping using a seeded free-electron laser. Nature. 2020;578:386–391.

    [13] Duris J, Li S, Driver T, Champenois EG, MacArthur JP, Lutman AA, Zhang Z, Rosenberger P, Aldrich JW, Coffee R, et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat Photonics. 2020;14:30–36.

    [14] Mantouvalou I, Witte K, Martyanov W, Jonas A, Grötzsch D, Streeck C, Löchel H, Rudolph I, Erko A, Stiel H, et al. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory. Appl Phys Lett. 2016;108:201106.

    [15] Hussein AE, Senabulya N, Ma Y, Streeter MJV, Kettle B, Dann SJD, Albert F, Bourgeois N, Cipiccia S, Cole JM, et al. Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures. Sci Rep. 2019;9:3249.

    [16] Hollinger R, Bargsten C, Shlyaptsev VN, Kaymak V, Pukhov A, Capeluto MG, Wang S, Rockwood A, Wang Y, Townsend A, et al. Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime. Optica. 2017;4:1344–1349.

    [17] Behm K, Hussein AE, Zhao TZ, Baggott RA, Cole JM, Hill E, Krushelnick K, Maksimchuk A, Nees J, Rose SJ, et al. Demonstration of femtosecond broadband X-rays from laser wakefield acceleration as a source for pump-probe X-ray absorption studies. High Energy Density Phys. 2020;35:100729.

    [18] Schnell M, Sävert A, Landgraf B, Reuter M, Nicolai M, Jäckel O, Peth C, Thiele T, Jansen O, Pukhov A, et al. Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation. Phys Rev Lett. 2012;108:075001.

    [19] Seres J, Seres E, Verhoef AJ, Tempea G, Streli C, Wobrauschek P, Yakovlev V, Scrinzi A, Spielmann C, Krausz F. Source of coherent kiloelectronvolt X-rays. Nature. 2005;433:596.

    [20] Popmintchev T, Chen M-C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke OD, Pugzlys A, et al. Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science. 2012;336:1287–1291.

    [21] Cousin SL, Di Palo N, Buades B, Teichmann SM, Reduzzi M, Devetta M, Kheifets A, Sansone G, Biegert J, Di Palo N, et al. Attosecond streaking in the water window: A new regime of attosecond pulse characterization. Phys Rev X. 2017;7:041030.

    [22] Teichmann SM, Silva F, Cousin SL, Hemmer M, Biegert J. 0.5-keV soft X-ray attosecond continua. Nat Commun. 2016;7:11493.

    [23] Silva F, Teichmann SM, Cousin SL, Hemmer M, Biegert J. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nat Commun. 2015;6:6611.

    [24] Chini M, Zhao K, Chang Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat Photonics. 2014;8:178–186.

    [25] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner HJ. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt Express. 2017;25:27506–27518.

    [26] Paul PM, Toma ES, Breger P, Mullot G, Auge F. Observation of a train of attosecond pulses from high harmonic generation. Science. 2001;292:1689–1692.

    [27] Hentschel M, Kienberger R, Spielmann C, Reider GA, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F. Attosecond metrology. Nature. 2001;414(6863):509–513.

    [28] Gordon A, Kärtner FX. Scaling of keV HHG photon yield with drive wavelength. Opt Express. 2005;13:2941–2947.

    [29] Yakovlev VS, Ivanov M, Krausz F. Enhanced phase-matching for generation of soft X-ray harmonics and attosecond pulses in atomic gases. Opt Express. 2007;15:15351–15364.

    [30] Austin DR, Biegert J. Strong-field approximation for the wavelength scaling of high-harmonic generation. Phys Rev A. 2012;86:023813.

    [31] Popmintchev T, Chen M-C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov IP, Murnane MM, Kapteyn HC. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc Natl Acad Sci USA. 2009;106:10516–10521.

    [32] Spielmann C, Burnett NH, Sartania S, Koppitsch R, Schnürer M, Kan C, Lenzner M, Wobrauschek P, Krausz F. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science. 1997;278:661–664.

    [33] Teichmann SM. Ponderomotively scaled high harmonic generation for attoscience in the water window [thesis]. [Barcelona (Spain)]: Universitat Politècnica de Catalunya; 2015.

    [34] Teichmann SM, Silva F, Cousin SL, Biegert J. Importance of intensity-to-phase coupling for water-window high-order-harmonic generation with few-cycle pulses. Phys Rev A. 2015;91:063817.

    [35] Zhao X, Wang S-J, Yu W-W, Wei H, Wei C, Wang B, Chen J, Lin CD. Metrology of time-domain soft X-ray attosecond pulses and reevaluation of pulse durations of three recent experiments. Phys Rev Appl. 2020;13:034043.

    [36] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat Commun. 2017;8:186.

    [37] Johnson AS, Austin DR, Wood DA, Brahms C, Gregory A, Holzner KB, Jarosch S, Larsen EW, Parker S, Strüber CS, et al. High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses. Sci Adv. 2018;4(5):eaar3761.

    [38] Popmintchev D, Galloway BR, Chen MC, Dollar F, Mancuso CA, Hankla A, Miaja-Avila L, O’Neil G, Shaw JM, Fan G, et al. Near- and extended-edge X-ray-absorption fine-structure spectroscopy using ultrafast coherent high-order harmonic supercontinua. Phys Rev Lett. 2018;120: Article 093002.

    [39] Schmidt C, Pertot Y, Balciunas T, Zinchenko K, Matthews M, Wörner HJ, Wolf J-P. High-order harmonic source spanning up to the oxygen K-edge based on filamentation pulse compression. Opt Express. 2018;26:11834–11842.

    [40] Buades B, Moonshiram D, Sidiropoulos TPH, León I, Schmidt P, Pi I, Di Palo N, Cousin SL, Picón A, Koppens F, et al. Dispersive soft x-ray absorption fine-structure spectroscopy in graphite with an attosecond pulse. Optica. 2018;5(5):502–506.

    [41] Reshak AH, Kityk IV, Auluck S. Electronic structure and optical properties of 1T-TiS2 and lithium intercalated 1T-TiS2 for lithium batteries. J Chem Phys. 2008;129: Article 074706.

    [42] de Groot F. Multiplet effects in X-ray spectroscopy. Coord Chem Rev. 2005;249:31–63.

    [43] Milne CJ, Penfold TJ, Chergui M. Recent experimental and theoretical developments in time-resolved X-ray spectroscopies. Coord Chem Rev. 2014;277–278:44–68.

    [44] Roemelt M, Maganas D, DeBeer S, Neese F. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge X-ray absorption spectroscopy. J Chem Phys. 2013;138: Article 204101.

    [45] Starace AF. Photoionization of atoms. In: Drake G, editor. Springer handbook of atomic, molecular, and optical physics. New York (NY): Springer New York; 2006. p. 379–390.

    [46] Moulet A, Bertrand JB, Klostermann T, Guggenmos A, Karpowicz N, Goulielmakis E. Soft x-ray excitonics. Science. 2017;357:1134–1138.

    [47] Newville M. EXAFS analysis using FEFF and FEFFIT. J Synchrotron Radiat. 2001;8:96–100.

    [48] Newville M. Fundamentals of XAFS. Rev Mineral Geochem. 2014;78:33–74.

    [49] Rehr JJ, Mustre de Leon J, Zabinsky SI, Albers RC. Theoretical x-ray absorption fine structure standards. J Am Chem Soc. 1991;113:5135–5140.

    [50] Joly Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys Rev B. 2001;63:125120.

    [51] The Elk Code.

    [52] Laskowski R, Blaha P. Understanding the L2,3 x-ray absorption spectra of early 3d transition elements. Phys Rev B. 2010;82:205104.

    [53] Blaha P, Schwarz K, Tran F, Laskowski R, Madsen GKH, Marks LD. WIEN2k: An APW+lo program for calculating the properties of solids. J Chem Phys. 2020;152: Article 074101.

    [54] Tancogne-Dejean N, Oliveira MJT, Andrade X, Appel H, Borca CH, Le Breton G, Buchholz F, Castro A, Corni S, Correa AA, et al. Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. J Chem Phys. 2020;152:124119.

    [55] Tate J, Auguste T, Muller HG, Salières P, Agostini P, DiMauro LF. Scaling of wave-packet dynamics in an intense midinfrared field. Phys Rev Lett. 2007;98: Article 013901.

    [56] Shiner AD, Trallero-Herrero C, Kajumba N, Bandulet H-CC, Comtois D, Légaré F, Giguère M, Kieffer J-CC, Corkum PB, Villeneuve DM. Wavelength scaling of high harmonic generation efficiency. Phys Rev Lett. 2009;103: Article 073902.

    [57] Chen M-C, Mancuso C, Hernández-García C, Dollar F, Galloway B, Popmintchev D, Huang P-C, Walker B, Plaja L, Jaroń-Becker AA, et al. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers. Proc Natl Acad Sci USA. 2014;111:E2361–E2367.

    [58] Buades B, Picón A, Berger E, León I, Di Palo N, Cousin SL, Cocchi C, Pellegrin E, Martin JH, Mañas-Valero S, et al. Attosecond state-resolved carrier motion in quantum materials probed by soft x-ray XANES. Appl Phys Rev. 2021;8: Article 011408.

    [59] Buades B, Picon A, Berger E, Leon I, Di Palo N, Cousin SL, Cocchi C, Pellegrin E, Martin JH, Mañas-Valero S, et al. Attosecond state-resolved carrier motion in quantum materials probed by soft X-ray XANES. arXiv. 2020. https://doi.org/

    [60] Jonas A, Stiel H, Glöggler L, Dahm D, Dammer K, Kanngießer B, Mantouvalou I. Towards Poisson noise limited optical pump soft X-ray probe NEXAFS spectroscopy using a laser-produced plasma source. Opt Express. 2019;27:36524–36537.

    [61] Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking MJJ, Elsaesser T, et al. Soft X-ray absorption spectroscopy of aqueous solutions using a table-top femtosecond soft X-ray source. J Phys Chem Lett. 2019;10:52–58.

    [62] Keitel B, Plönjes E, Kreis S, Kuhlmann M, Tiedtke K, Mey T, Schäferand B, Mann K. Hartmann wavefront sensors and their application at FLASH. J Synchrotron Radiat. 2016;23(1):43–49.

    [63] Wodzinski T, Künzel S, Koliyadu C, Jayanath P, Hussain M, Keitel B, Williams GO, Zeitoun P, Plönjes E, Fajardo M. High-harmonic generation wave front dependence on a driving infrared wave front. Appl Opt. 2020;1363–1370.

    [64] Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill WT, Chang Z. Attosecond transient absorption spectrum of argon at the L2,3 edge. Phys Rev A. 2018;97: Article 031407.

    [65] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502.

    [66] Pemmaraju CD. Simulation of attosecond transient soft x-ray absorption in solids using generalized Kohn–Sham real-time time-dependent density functional theory. New J Phys. 2020;22: Article 083063.

    [67] Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van der Waals heterostructures. Science. 2016;353(6298):aac9439.

    [68] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017, 2017;2: Article 17033.

    [69] Ferrari AC, Bonaccorso F, Fal’ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7:4598–4810.

    [70] Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer Nanosheets. Acc Chem Res. 2015;48:56–64.

    [71] Sidiropoulos TPH, Di Palo N, Rivas DE, Severino S, Reduzzi M, Nandy B, Bauerhenne B, Krylow S, Vasileiadis T, Danz T, et al. Probing the energy conversion pathways between light, carriers, and lattice in real time with attosecond core-level spectroscopy. Phys Rev X. 2021;11: Article 041060.

    [72] Bunău O, Joly Y. Self-consistent aspects of x-ray absorption calculations. J Phys Condens Matter. 2009;21:345501.

    [73] Nagy T, Hädrich S, Simon P, Blumenstein A, Walther N, Klas R, Buldt J, Stark H, Breitkopf S, Jójárt P, et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power. Optica. 2019;6:1423–1424.

    [74] Eidam T, Hanf S, Seise E, Andersen TV, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A. Femtosecond fiber CPA system emitting 830 W average output power. Opt Lett. 2010;35:94–96.

    [75] Hrisafov S, Pupeikis J, Chevreuil P-A, Brunner F, Phillips CR, Gallmann L, Keller U. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz. Opt Express. 2020;28:40145–40154.

    [76] Kleine C, Ekimova M, Winghart M-O, Eckert S, Reichel O, Löchel H, Probst J, Braig C, Seifert C, Erko A, et al. Highly efficient soft x-ray spectrometer for transient absorption spectroscopy with broadband table-top high harmonic sources. Struct Dyn. 2021;8: Article 034302.

    [77] Bruner BD, Krüger M, Pedatzur O, Orenstein G, Azoury D, Dudovich N. Robust enhancement of high harmonic generation via attosecond control of ionization. Opt Express. 2018;26:9310–9322.

    [78] Martínez Vázquez R, Ciriolo AG, Crippa G, Tosa V, Sala F, Devetta M, Vozzi C, Stagira S, Osellame R. Femtosecond laser micromachining of integrated glass devices for high-order harmonic generation. Int J Appl Glas Sci. 2022;13:162–170.

    [79] Pacilé D, Papagno M, Rodríguez AF, Grioni M, Papagno L, Girit ÇÖ, Meyer JC, Begtrup GE, Zettl A. Near-edge X-ray absorption fine-structure investigation of graphene. Phys Rev Lett. 2008;101: Article 066806.

    Adam M. Summers, Stefano Severino, Maurizio Reduzzi, Themistoklis P. H. Sidiropoulos, Daniel E. Rivas, Nicola Di Palo, Hung-Wei Sun, Ying-Hao Chien, Iker León, Bárbara Buades, Seth L. Cousin, Stephan M. Teichmann, Tobias Mey, Klaus Mann, Barbara Keitel, Elke Plönjes, Dmitri K. Efetov, Heinrich Schwoerer, Jens Biegert. Realizing Attosecond Core-Level X-ray Spectroscopy for the Investigation of Condensed Matter Systems[J]. Ultrafast Science, 2023, 3(1): 0004
    Download Citation