[1] J. Yu, Y. Wu. High-speed optical fiber communication in China. ACS Photonics, 10, 2128(2023).
[2] F. Buchali, F. Steiner, G. Böcherer et al. Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration. J. Light. Technol., 34, 1599(2021).
[3] J. Ding, B. Sang, Y. Wang et al. High spectral efficiency WDM transmission based on hybrid probabilistically and geometrically shaped 256QAM. J. Light. Technol., 39, 5494(2021).
[4] M. Kong, J. Shi, B. Sang et al. 800-Gb/s/carrier WDM coherent transmission over 2000 km based on truncated PS-64QAM utilizing MIMO volterra equalizer. J. Light. Technol., 40, 2830(2022).
[5] C. Wang, K. Wang, Y. Tan et al. Low complexity joint neural network equalizer in a 248 Gbit/s VSB PS-PAM8 IM/DD transmission system. European Conference on Optical Communication (ECOC), Tu5.28(2022).
[6] W. Shen, J. Du, L. Sun et al. Low-latency and high-speed hollow-core fiber optical interconnection at 2-micron waveband. J. Light. Technol., 38, 3874(2020).
[7] F. Poletti. Nested antiresonant nodeless hollow core fiber. Opt. Express, 22, 23807(2014).
[8] Y. Hong, H. Sakr, N. Taengnoi et al. Multi-band direct-detection transmission over an ultrawide bandwidth hollow-core NANF. J. Light. Technol., 38, 2849(2020).
[9] A. Nespola, S. Straullu, T. D. Bradley et al. Transmission of 61 C-band channels over record distance of hollow-core-fiber with L-band interferers. J. Light. Technol., 39, 813(2021).
[10] Z. Liu, L. Galdino, J. R. Hayes et al. Record high capacity (6.8 Tbit/s) WDM coherent transmission in hollow-core antiresonant fiber. Optical Fiber Communications Conference and Exhibition (OFC), TH5B.8(2017).
[11] J. X. Cai, H. G. Batshon, M. V. Mazurczyk et al. 70.46 Tb/s over 7,600 km and 71.65 Tb/s over 6,970 km transmission in C+L band using coded modulation with hybrid constellation shaping and nonlinearity compensation. J. Light. Technol., 36, 114(2018).
[12] D. Mello, F. A. Barbosa, J. D. Reis. Interplay of probabilistic shaping and the blind phase search algorithm. J. Light. Technol., 36, 5096(2018).
[13] Q. Zhang, C. Shu. Viterbi and viterbi algorithm based phase recovery for probabilistically shaped signals. J. Light. Technol., 39, 1364(2021).
[14] J. Ding, W. Li, Y. Wang et al. 124.8-Gbit/s PS-256QAM signal wireless delivery over 104 m in a photonics-aided terahertz-wave system. Trans. Terahertz Sci. Technol., 12, 409(2022).
[15] Z. Chen, S. Fu, M. Tang et al. Maximum probability directed blind phase search for PS-QAM with variable shaping factors. Opt. Express, 30, 550(2022).
[16] J. C. M. Diniz, Q. Fan, S. M. Ranzini et al. Low-complexity carrier phase recovery based on principal component analysis for square-QAM modulation formats. Opt. Express, 27, 15617(2019).
[17] S. Hu, W. Zhang, X. Yi et al. MAP detection of probabilistically shaped constellations in optical fiber transmissions. Optical Fiber Communication Conference (OFC), W1D.3(2019).
[18] Y. Chen, M. N. Petrovich, E. Numkam Fokoua et al. Hollow core DNANF optical fiber with <0.11 dB/km loss. Optical Fiber Communication Conference (OFC), Th4A.8(2024).
[19] E. P. da Silva, D. Zibar. Widely linear equalization for IQ imbalance and skew compensation in optical coherent receivers. J. Light. Technol., 34, 3577(2016).
[20] J. Cho, L. Schmalen, P. J. Winzer. Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM. European Conference on Optical Communication (ECOC), M.2.D.2(2017).