• Photonics Research
  • Vol. 7, Issue 12, 1440 (2019)
Guo-Qing Qin1,†, Min Wang1,†, Jing-Wei Wen1, Dong Ruan1,4,*, and Gui-Lu Long1,2,3,5,*
Author Affiliations
  • 1State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
  • 2Beijing Information Science and Technology National Research Center, Beijing 100084, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • 4e-mail: dongruan@tsinghua.edu.cn
  • 5e-mail: gllong@tsinghua.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.001440 Cite this Article Set citation alerts
    Guo-Qing Qin, Min Wang, Jing-Wei Wen, Dong Ruan, Gui-Lu Long, "Brillouin cavity optomechanics sensing with enhanced dynamical backaction," Photonics Res. 7, 1440 (2019) Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] Y.-F. Xiao, Q. Gong. Optical microcavity: from fundamental physics to functional photonics devices. Sci. Bull., 61, 185-186(2016).

    [3] B. Dayan, A. S. Parkins, T. Aoki, E. Ostby, K. J. Vahala, H. J. Kimble. A photon turnstile dynamically regulated by one atom. Science, 319, 1062-1065(2008).

    [4] T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 443, 671-674(2006).

    [5] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [6] Z. Yang, W. Zhang, R. Ma, X. Dong, S. L. Hansen, X. Li, Y. Rao. Nanoparticle mediated microcavity random laser. Photon. Res., 5, 557-560(2017).

    [7] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [8] X.-F. Liu, F. Lei, T.-J. Wang, G.-L. Long, C. Wang. Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator. Nanophotonics, 8, 127-134(2018).

    [9] M. Wang, Y.-Z. Wang, X.-S. Xu, Y.-Q. Hu, G.-L. Long. Characterization of microresonator-geometry-deformation for cavity optomechanics. Opt. Express, 27, 63-73(2019).

    [10] Y.-P. Gao, T.-J. Wang, C. Cao, C. Wang. Gap induced mode evolution under the asymmetric structure in a plasmonic resonator system. Photon. Res., 5, 113-118(2017).

    [11] B.-B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, U. L. Andersen. Quantum enhanced optomechanical magnetometry. Optica, 5, 850-856(2018).

    [12] F. Vollmer, L. Yang. Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 1, 267-291(2012).

    [13] Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, Q. Gong. Optomechanical sensing with on-chip microcavities. Front. Phys., 8, 475-490(2013).

    [14] Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, Y.-X. Liu. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 117, 110802(2016).

    [15] E. Gavartin, P. Verlot, T. Kippenberg. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol., 7, 509-514(2012).

    [16] S.-W. Bin, X.-Y. Lü, T.-S. Yin, G.-L. Zhu, Q. Bin, Y. Wu. Mass sensing by quantum criticality. Opt. Lett., 44, 630-633(2019).

    [17] J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, M. Khajavikhan. Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope. Opt. Lett., 42, 1556-1559(2017).

    [18] J. Li, M.-G. Suh, K. Vahala. Microresonator Brillouin gyroscope. Optica, 4, 346-348(2017).

    [19] S. Wan, R. Niu, H.-L. Ren, C.-L. Zou, G.-C. Guo, C.-H. Dong. Experimental demonstration of dissipative sensing in a self-interference microring resonator. Photon. Res., 6, 681-685(2018).

    [20] X. Zhang, Q.-T. Cao, Z. Wang, Y.-X. Liu, C.-W. Qiu, L. Yang, Q. Gong, Y.-F. Xiao. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21-24(2019).

    [21] C. Xu, L. Zhang, S. Huang, T. Ma, F. Liu, H. Yonezawa, Y. Zhang, M. Xiao. Sensing and tracking enhanced by quantum squeezing. Photon. Res., 7, A14-A26(2019).

    [22] H. Jing, H. Lü, S. Özdemir, T. Carmon, F. Nori. Nanoparticle sensing with a spinning resonator. Optica, 5, 1424-1430(2018).

    [23] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 5, 591-596(2008).

    [24] V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett., 13, 3347-3351(2013).

    [25] J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46-49(2010).

    [26] T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala. High sensitivity nanoparticle detection using optical microcavities. Proc. Natl. Acad. Sci. U. S. A., 108, 5976-5979(2011).

    [27] L. He, Ş. K. Özdemir, J. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428-432(2011).

    [28] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [29] N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, Q. Song. Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point. Sci. Rep., 5, 11912(2015).

    [30] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [31] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [32] Y.-H. Lai, Y.-K. Lu, M.-G. Suh, K. Vahala. Enhanced sensitivity operation of an optical gyroscope near an exceptional point(2019).

    [33] B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 7, 630-641(2019).

    [34] P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, A. Alù. Generalized parity-time symmetry condition for enhanced sensor telemetry. Nat. Electron., 1, 297-304(2018).

    [35] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Ylmaz, J. Wiersig, S. Rotter, L. Yang. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. U. S. A., 113, 6845-6850(2016).

    [36] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [37] C.-H. Yi, J. Kullig, M. Hentschel, J. Wiersig. Non-Hermitian degeneracies of internal-external mode pairs in dielectric microdisks. Photon. Res., 7, 464-472(2019).

    [38] Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. U. S. A., 111, E3836-E3844(2014).

    [39] B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, Y.-F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. U. S. A., 111, 14657-14662(2014).

    [40] J. Su, A. F. Goldberg, B. M. Stoltz. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl., 5, e16001(2016).

    [41] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [42] C. Dong, V. Fiore, M. C. Kuzyk, H. Wang. Optomechanical dark mode. Science, 338, 1609-1613(2012).

    [43] V. Fiore, Y. Yang, M. C. Kuzyk, R. J. Barbour, L. Tian, H. Wang. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett., 107, 133601(2011).

    [44] X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G.-L. Long, H. Wang. Chip-based silica microspheres for cavity optomechanics. Opt. Express, 23, 27260-27265(2015).

    [45] W. Zhao, S.-D. Zhang, A. Miranowicz, H. Jing. Weak-force sensing with squeezed optomechanics(2019).

    [46] X. Fan, I. M. White. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics, 5, 591-597(2011).

    [47] B. Yao, C. Yu, Y. Wu, S.-W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, Y. Rao. Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Lett., 17, 4996-5002(2017).

    [48] W. Yu, W. C. Jiang, Q. Lin, T. Lu. Cavity optomechanical spring sensing of single molecules. Nat. Commun., 7, 12311(2016).

    [49] C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, G.-C. Guo. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun., 6, 6193(2015).

    [50] J. Kim, M. C. Kuzyk, K. Han, H. Wang, G. Bahl. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys., 11, 275-280(2015).

    [51] A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, J. Harris. Superfluid Brillouin optomechanics. Nat. Phys., 13, 74-79(2017).

    [52] Y. A. Espinel, F. G. Santos, G. O. Luiz, T. M. Alegre, G. S. Wiederhecker. Brillouin optomechanics in coupled silicon microcavities. Sci. Rep., 7, 43423(2017).

    [53] G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon. Brillouin cavity optomechanics with microfluidic devices. Nat. Commun., 4, 1994(2013).

    [54] Y. Antman, A. Clain, Y. London, A. Zadok. Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering. Optica, 3, 510-516(2016).

    [55] H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, F. Nori. Pt-symmetric phonon laser. Phys. Rev. Lett., 113, 053604(2014).

    [56] J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. Zhao, F. Nori, Y.-X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).

    [57] H. Jing, Ş. Özdemir, H. Lü, F. Nori. High-order exceptional points in optomechanics. Sci. Rep., 7, 3386(2017).

    [58] Y.-L. Liu, Y.-X. Liu. Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity. Phys. Rev. A, 96, 023812(2017).

    [59] J. Li, S. Diddams, K. J. Vahala. Pump frequency noise coupling into a microcavity by thermo-optic locking. Opt. Express, 22, 14559-14567(2014).

    CLP Journals

    [1] Kaiyu Cui, Zhilei Huang, Ning Wu, Qiancheng Xu, Fei Pan, Jian Xiong, Xue Feng, Fang Liu, Wei Zhang, Yidong Huang, "Phonon lasing in a hetero optomechanical crystal cavity," Photonics Res. 9, 937 (2021)

    [2] Xu-Sheng Xu, Hao Zhang, Xiang-Yu Kong, Min Wang, Gui-Lu Long, "Frequency-tuning-induced state transfer in optical microcavities," Photonics Res. 8, 490 (2020)

    Guo-Qing Qin, Min Wang, Jing-Wei Wen, Dong Ruan, Gui-Lu Long, "Brillouin cavity optomechanics sensing with enhanced dynamical backaction," Photonics Res. 7, 1440 (2019)
    Download Citation