[1] . Domains in Ferroic Crystals and Thin Films(2009).
[2] Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 61, 1267(1998).
[3] Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science, 313, 1614(2006).
[4] Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res., 37, 589(2007).
[5] A thin film approach to engineering functionality into oxides. J. Amer. Ceram. Soc., 91, 2429(2008).
[6] Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 452, 732(2008).
[7] Growth of nanoscale BaTiO3 /SrTiO3 superlattices by molecular-beam epitaxy. J. Mater. Res., 23, 1417(2011).
[8] Repolarization of ferroelectric superlattices BaZrO3/BaTiO3. Sci. Rep., 9, 18948(2019).
[9] Lattice phase field model for nanomaterials. Materials (Basel), 14, 7317(2021).
[10] Vortex domain walls in ferroelectrics. Nano. Lett., 21, 3533(2021).
[11] Engineering polar vortex from topologically trivial domain architecture. Nat. Commun., 12, 4620(2021).
[12] Artificial creation and separation of a single vortex–antivortex pair in a ferroelectric flatland. npj Quantum Mater., 4, 29(2019).
[13] Rotational polarization nanotopologies in BaTiO3 /SrTiO3 superlattices. Nanoscale, 11, 21275(2019).
[14] Creating polar antivortex in PbTiO3 /SrTiO3 superlattice. Nat. Commun., 12, 2054(2021).
[15] Polar meron lattice in strained oxide ferroelectrics. Nat. Mater., 19, 881(2020).
[16] Strain manipulation of ferroelectric skyrmion bubbles in a freestanding PbTiO3 film: A phase field simulation. Phys. Rev. B, 105, 224101(2022).
[17] Nanoscale bubble domains and topological transitions in ultrathin ferroelectric films. Adv. Mater., 29, 1702375(2017).
[18] Mixed Bloch-Néel-Ising character of 180∘ ferroelectric domain walls. Phys. Rev. B., 80, 060102(2009).
[19] Surface effect on domain wall width in ferroelectrics. J. Appl. Phys., 106, 084102(2009).
[20] Domain wall nanoelectronics. Rev. Mod. Phys., 84, 119(2012).
[21] First-principles study of 180∘ domain walls in BaTiO3 : Mixed Bloch-Néel-Ising character. Phys. Rev. B, 90, 054106(2014).
[22] Phase-field study of crystallographic texturing in piezoelectric polycrystals. J. Adv. Dielec., 12, 2244002(2022).
[23] Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature, 449, 881(2007).
[24] The influence of 180∘ ferroelectric domain wall width on the threshold field for wall motion. J. Appl. Phys., 104, 084107(2008).
[25] Modeling of ferroelectric domains in thin films and superlattices. Mater. Sci. Eng. B, 120, 16(2005).
[26] Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices. Phys. Rev. Lett., 94, 047601(2005).
[27] Ferroelectric domains in thin films and superlattices: Results of numerical modeling. Ferroelectrics, 359, 14(2007).
[28] Universal properties of ferroelectric domains. Phys. Rev. Lett., 102, 147601(2009).
[29] Dipole spring ferroelectrics in superlattice SrTiO3 /BaTiO3 thin films exhibiting constricted hysteresis loops. Appl. Phys. Lett., 100, 092905(2012).
[30] Influence of interfacial coherency on ferroelectric switching of superlattice BaTiO3 /SrTiO3. Appl. Phys. Lett., 107, 122906(2015).
[31] Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110). Appl. Phys. Lett., 82, 3460(2003).
[32] Interfacial coherency and ferroelectricity of BaTiO3/ SrTiO3 superlattice films. Appl. Phys. Lett., 91, 252904(2007).
[33] Prediction of ferroelectricity in BaTiO3/SrTiO3 superlattices with domains. Appl. Phys. Lett., 91, 112914(2007).