• Nano-Micro Letters
  • Vol. 16, Issue 1, 151 (2024)
Hongxiong Li1,†, Zhaofu Ding1,†, Quan Zhou1, Jun Chen2..., Zhuoxin Liu1, Chunyu Du1, Lirong Liang1,* and Guangming Chen1,**|Show fewer author(s)
Author Affiliations
  • 1College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People’s Republic of China
  • 2Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
  • show less
    DOI: 10.1007/s40820-024-01370-z Cite this Article
    Hongxiong Li, Zhaofu Ding, Quan Zhou, Jun Chen, Zhuoxin Liu, Chunyu Du, Lirong Liang, Guangming Chen. Harness High-Temperature Thermal Energy via Elastic Thermoelectric Aerogels[J]. Nano-Micro Letters, 2024, 16(1): 151 Copy Citation Text show less
    References

    [1] L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci. Eng. R. Rep. 150, 100690 (2022).

    [2] Y. Fang, G. Chen, M. Bick, J. Chen, Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 50, 9357–9374 (2021).

    [3] H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023).

    [4] Z. Ding, C. Du, W. Long, C.-F. Cao, L. Liang et al., Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 68, 3261–3277 (2023).

    [5] X. Wang, P. Liu, Q. Jiang, W. Zhou, J. Xu et al., Efficient DMSO-vapor annealing for enhancing thermoelectric performance of PEDOT:PSS-based aerogel. ACS Appl. Mater. Interfaces 11, 2408–2417 (2019).

    [6] N. Okada, K. Sato, M. Yokoo, E. Kodama, S. Kanehashi et al., Thermoelectric properties of poly(3-hexylthiophene) nanofiber aerogels with a giant seebeck coefficient. ACS Appl. Polym. Mater. 3, 455–463 (2021).

    [7] S. Han, N.U.H. Alvi, L. Granlöf, H. Granberg, M. Berggren et al., A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv. Sci. 6, 1802128 (2019).

    [8] L. Liang, X. Wang, Z. Liu, G. Sun, G. Chen, Recent advances in organic, inorganic, and hybrid thermoelectric aerogels. Chin. Phys. B 31, 027903 (2022).

    [9] Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: from materials to devices. Renewable Sustainable Energy Rev. 137, 110448 (2021).

    [10] Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13, 119 (2021).

    [11] N. Yanagishima, S. Kanehashi, H. Saito, K. Ogino, T. Shimomura, Thermoelectric properties of PEDOT:PSS aerogel secondary-doped in supercritical CO2 atmosphere with low thermal conductivity. Polymer 206, 122912 (2020).

    [12] L. Wang, H. Bi, Q. Yao, D. Ren, S. Qu et al., Three-dimensional tubular graphene/polyaniline composites as high-performance elastic thermoelectrics. Compos. Sci. Technol. 150, 135–140 (2017).

    [13] C. Yu, H. Kim, J.R. Youn, Y.S. Song, Enhancement of structural stability of graphene aerogel for thermal energy harvesting. ACS Appl. Energy Mater. 4, 11666–11674 (2021).

    [14] C. Yu, Y.S. Song, Analysis of thermoelectric energy harvesting with graphene aerogel-supported form-stable phase change materials. Nanomaterials 11, 2192 (2021).

    [15] X. Qi, T. Miao, C. Chi, G. Zhang, C. Zhang et al., Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment. Nano Energy 77, 105096 (2020).

    [16] F. Jia, R. Wu, C. Liu, J. Lan, Y.-H. Lin et al., High thermoelectric and flexible PEDOT/SWCNT/BC nanoporous films derived from aerogels. ACS Sustainable Chem. Eng. 7(14), 12591–12600 (2019).

    [17] X. Sun, Y. Wei, J. Li, J. Zhao, L. Zhao et al., Ultralight conducting PEDOT:PSS/carbon nanotube aerogels doped with silver for thermoelectric materials. Sci. China Mater. 60, 159–166 (2017).

    [18] H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16, 2953–2967 (2022).

    [19] J. Kim, E.J. Bae, Y.H. Kang, C. Lee, S.Y. Cho, Elastic thermoelectric sponge for pressure-induced enhancement of power generation. Nano Energy 74, 104824 (2020).

    [20] X.-Z. Gao, F.-L. Gao, J. Liu, Y. Li, P. Wan et al., Self-powered resilient porous sensors with thermoelectric poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and carbon nanotubes for sensitive temperature and pressure dual-mode sensing. ACS Appl. Mater. Interfaces 14, 43783–43791 (2022).

    [21] Y. Wang, H. Mao, Y. Wang, P. Zhu, C. Liu et al., 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man–machine interaction applications. J. Mater. Chem. A 8, 15167–15176 (2020).

    [22] X. He, Y. Hao, M. He, X. Qin, L. Wang et al., Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl. Mater. Interfaces 13, 60498–60507 (2021).

    [23] F.-L. Gao, P. Min, X.-Z. Gao, C. Li, T. Zhang et al., Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT:PSS and carbon nanotubes for human energy harvesting and electronic-skin. J. Mater. Chem. A 10, 18256–18266 (2022).

    [24] D. Zhang, Y. Mao, P. Bai, Q. Li, W. He et al., Multifunctional superelastic graphene-based thermoelectric sponges for wearable and thermal management devices. Nano Lett. 22, 3417–3424 (2022).

    [25] X. Wang, L. Liang, H. Lv, Y. Zhang, G. Chen, Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 90, 106577 (2021).

    [26] F. Zhang, Y. Zang, D. Huang, C.-A. Di, D. Zhu, Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356 (2015).

    [27] W. Deng, L. Deng, Z. Li, Y. Zhang, G. Chen, Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid. ACS Appl. Mater. Interfaces 13, 12131–12140 (2021).

    [28] L. Wang, J. Zhang, Y. Guo, X. Chen, X. Jin et al., Fabrication of core-shell structured poly(3,4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors. Carbon 148, 290–296 (2019).

    [29] S. Han, P. Wang, Y. Zhou, Q. Meng, M. Aakyiir et al., Flexible, mechanically robust, multifunctional and sustainable cellulose/graphene nanocomposite films for wearable human-motion monitoring. Compos. Sci. Technol. 230, 109451 (2022).

    [30] X. Zhao, W. Wang, Z. Wang, J. Wang, T. Huang et al., Flexible PEDOT:PSS/polyimide aerogels with linearly responsive and stable properties for piezoresistive sensor applications. Chem. Eng. J. 395, 125115 (2020).

    [31] X. Zhao, Z. Chen, H. Zhuo, Y. Hu, G. Shi et al., Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting. J. Mater. Sci. Technol. 120, 150–158 (2022).

    [32] H. Li, Y. Zong, J. He, Q. Ding, Y. Jiang et al., Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection. Carbohydr. Polym. 280, 119036 (2022).

    [33] U. Ail, Z.U. Khan, H. Granberg, F. Berthold, R. Parasuraman et al., Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications. Synth. Met. 225, 55–63 (2017).

    [34] Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020).

    [35] Y. Yin, Y. Wang, H. Li, J. Xu, C. Zhang et al., A flexible dual parameter sensor with hierarchical porous structure for fully decoupled pressure–temperature sensing. Chem. Eng. J. 430, 133158 (2022).

    [36] C. Zhang, S. Song, Q. Li, J. Wang, Z. Liu et al., One-pot facile fabrication of covalently cross-linked carbon nanotube/PDMS composite foam as a pressure/temperature sensor with high sensitivity and stability. J. Mater. Chem. C 9, 15337–15345 (2021).

    [37] C. Jiang, J. Chen, X. Lai, H. Li, X. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022).

    [38] H. Cheng, Y. Du, B. Wang, Z. Mao, H. Xu et al., Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chem. Eng. J. 338, 1–7 (2018).

    [39] C. Du, M. Cao, G. Li, Y. Hu, Y. Zhang et al., Toward precision recognition of complex hand motions: Wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 32, 2206083 (2022).

    Hongxiong Li, Zhaofu Ding, Quan Zhou, Jun Chen, Zhuoxin Liu, Chunyu Du, Lirong Liang, Guangming Chen. Harness High-Temperature Thermal Energy via Elastic Thermoelectric Aerogels[J]. Nano-Micro Letters, 2024, 16(1): 151
    Download Citation