• Acta Physica Sinica
  • Vol. 69, Issue 1, 010502-1 (2020)
Min Li1,*, Bo-Ting Wang1, Tao Xu2,*, and Juan-Juan Shui1
Author Affiliations
  • 1Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
  • 2College of Science, China University of Petroleum, Beijing 102249, China
  • show less
    DOI: 10.7498/aps.69.20191384 Cite this Article
    Min Li, Bo-Ting Wang, Tao Xu, Juan-Juan Shui. Study on the generation mechanism of bright and dark solitary waves and rogue wave for a fourth-order dispersive nonlinear Schrödinger equation[J]. Acta Physica Sinica, 2020, 69(1): 010502-1 Copy Citation Text show less

    Abstract

    In this paper, we study the generation mechanism of bright and dark solitary waves and rogue wave for the fourth-order dispersive nonlinear Schr?dinger (FODNLS) equation, which can not only model the nonlinear propagation and interaction of ultrashort pulses in the high-speed optical fiber transmission system, but also govern the nonlinear spin excitations in the onedimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole-dipole interaction. Firstly, via the phase plane analysis, we obtain both the homoclinic and heteroclinic orbits for the two-dimensional plane autonomous system reduced from the FODNLS equation. Further, we derive the bright and dark solitary wave solutions under the corresponding conditions, which reveals the relationship between the homoclinic (heteroclinic) orbit and solitary wave. Secondly, based on the exact first-order breather solution of the FODNLS equation over a nonvanishing background, we give the explicit expressions of group and phase velocities, and reveal that there exists a jump in both the velocities. Finally, in order to verify that the breather becomes a rogue wave at the jumping point, we obtain the first-order rogue wave solution by taking the limit of the breather solution at such point, which confirms the relationship of the generation of rogue wave with the velocity discontinuity.
    $ iqt+α1qxx+α2q|q|2+ε2(α3qxxxx+α4|q|2qxx+α5q2qxx+α6qx2q+α7q|qx|2+α8|q|4q)=0, $(1)

    View in Article

    $ q(x,t)=ϕ(ξ)eih(x,t),ξ=a(xct),h=KxΩt, $(2)

    View in Article

    $ i[a(c2Kα1+4K3ε2α3)ϕ+2aKε2(α4α5+α6)ϕ2ϕ+4a3Kε2α3ϕ]+ε2α8ϕ5+[α2K2ε2(α4+α5+α6α7)]ϕ3+(ΩK2α1+K4ε2α3+a2ε2α6ϕ2+a2ε2α7ϕ2)ϕ+a2ε2(α4+α5)ϕ2ϕ+a2[α1ϕ+ε2α3(6K2ϕ+a2ϕ)]=0. $(3)

    View in Article

    $ a(c2Kα1+4K3ε2α3)ϕ+2aKε2×(α4α5+α6)ϕ2ϕ+4a3Kε2α3ϕ=0, $(4)

    View in Article

    $ ε2α8ϕ5+[α2K2ε2(α4+α5+α6α7)]ϕ3+(ΩK2α1+K4ε2α3+a2ε2α6ϕ2+a2ε2α7ϕ2)ϕ+a2ε2(α4+α5)ϕ2ϕ+a2[α1ϕ+ε2α3(6K2ϕ+a2ϕ)]=0. $(5)

    View in Article

    $ 12a3Kε2α3ϕa(3c6Kα1+12K3ε2α3)ϕ+2aKε2(α4α5+α6)ϕ3=0. $(6)

    View in Article

    $ ϕ=14a2Kε2α3(4Kε2α4ϕϕ2+4Kε2α5ϕϕ24Kε2α6ϕϕ2+cϕ2Kα1ϕ+4K3ε2α3ϕ2Kε2α4ϕ2ϕ+2Kε2α5ϕ2ϕ2Kε2α6ϕ2ϕ). $(7)

    View in Article

    $ ϕ2+c2+4K2[4ε2(cK+Ω)α3(α14K2ε2α3)2]16a2K2ε4α3(α4α5α7)+c(α4+5α52α6)+2Kα1(2α44α5+α6)+4Kα3[3α2+K2ε2(α4α52α6+3α7)]12a2Kε2α3(α4α5α7)ϕ2+(α43α5+α6)(α4α5+α6)+12α3α812a2α3(α4α5α7)ϕ4=0.$(8)

    View in Article

    $12a^{3}K\varepsilon^{2}\alpha_3\phi''\phi'-a(3c-6K\alpha_1+12K^3\varepsilon^2\alpha_3)\phi\phi'+2aK\varepsilon^2(\alpha_4-\alpha_5+\alpha_6)\phi^{3}\phi' = 0. $(9)

    View in Article

    $ c(α4+5α52α6)+2Kα1(2α44α5+α6)+4Kα3[3α2+K2ε2(α4α52α6+3α7)]6a2Kε2α3(α4α5α7)ϕϕ2ϕϕ+(α43α5+α6)(α4α5+α6)+12α3α83a2α3(α4α5α7)ϕ3ϕ=0. $(10)

    View in Article

    $ c = \frac{2K[6\alpha_2\alpha_3+\alpha_1(\alpha_4-7\alpha_5+\alpha_6-3\alpha_7)-4K^2\varepsilon^2\alpha_3(\alpha_4-\alpha_5+\alpha_6-3\alpha_7)]}{2\alpha_4-8\alpha_5+2\alpha_6-3\alpha_7}, $(11)

    View in Article

    $ 4α52+α62+α4(4α5+α6α7)α6α7+α5(5α6+α7)+12α3α8=0. $(12)

    View in Article

    $ \phi''+\beta_1\phi+\beta_2\phi^{3} = 0,$(13)

    View in Article

    $ β1=4K2ε2α32α1+cK4a2ε2α3,β2=α4α5+α66a2α3. $(14)

    View in Article

    $X' = Y, \tag{15a}$()

    View in Article

    $Y' = -\beta_1X-\beta_2X^{3} .\tag{15b}$()

    View in Article

    $ H(X,Y) = \frac{1}{2}Y^{2}+\frac{\beta_1}{2}X^{2}+\frac{\beta_2}{4}X^{4} = h^*. $(16)

    View in Article

    ${ J} = \left(\!\!\!{01β13β2X20}\!\!\!\right),$(17)

    View in Article

    $ h_1 = h_2 = H(S_1) = \frac{-\beta_1^{2}}{4\beta_2}, \;\; h_0 = H(S_0) = 0\,. $(18)

    View in Article

    $ h^{*} = \frac{c^{2}\!+\!4K^{2}[4\varepsilon^{2}(-cK+\varOmega)\alpha_3\!- \! (\alpha_1\!-\! 4K^{2}\varepsilon^{2}\alpha_3)^{2}]} {16a^{2}K^{2}\varepsilon^{4}\alpha_3(\alpha_4-\alpha_5-\alpha_7)}\,. $(19)

    View in Article

    $ ϕ2=β1ϕ2β22ϕ4. $(20)

    View in Article

    $ \phi = \pm\sqrt{\frac{-2\beta_1}{\beta_2}}\rm{sech}(\sqrt{-\beta_1}\xi)\,. $(21)

    View in Article

    $ q(x,t) = \pm {\rm e}^{{\rm i}(kx-\varOmega t)}\sqrt{\frac{-2\beta_1}{\beta_2}}{\rm sech}\sqrt{-\beta_1}a(x-ct)\,, $(22)

    View in Article

    $ c=2K[6α2α3+α1(α47α5+α63α7)4K2ε2α3(α4α5+α63α7)]2α48α5+2α63α7,Ω=c24K2[4cKε2α3+(α14K2ε2α3)2]16K2ε2α3,4α52+α62+α4(4α5+α6α7)α6α7+α5(5α6+α7)+12α3α8=0. $()

    View in Article

    $ ϕ2=β1ϕ2β22ϕ4β122β2. $(23)

    View in Article

    $ \phi = \pm\sqrt{\frac{-\beta_1}{\beta_2}}\tanh\left(\sqrt{\frac{\beta_1}{2}}\xi\right)\,. $(24)

    View in Article

    $ q(x,t) = \pm {\rm e}^{{\rm i}(kx-\varOmega t)}\sqrt{\frac{\beta_1}{-\beta_2}}\tanh\sqrt{\frac{\beta_1}{2}}a(x-ct)\,, $(25)

    View in Article

    $ c=2K[6α2α3+α1(α47α5+α63α7)4K2ε2α3(α4α5+α63α7)]2α48α5+2α63α7,Ω=(α4α5α7)[3(c2Kα1+4K3ε2α3)216K2ε2α3(α4α5+α6)+cKα4α5α7c216K2ε2α3(α4α5α7)+(α14K2ε2α3)24ε2α3(α4α5α7)],4α52=α62α4(4α5+α6α7)+α6α7α5(5α6+α7)12α3α8. $()

    View in Article

    $ iqt+qxx+2q|q|2+ε2(qxxxx+6qx2q+4q|qx|2+8|q|2qxx+2q2qxx+6|q|4q)=0. $(26)

    View in Article

    ${{ {\varPhi}} _x} = { M}{ {\varPhi}} ,\;{ M} = \left( {iλqqiλ} \right),\tag{27a}$()

    View in Article

    ${{ {\varPhi}} _t} = { N}{ {\varPhi}} ,\;{ N} = \left( {8iε2A42iλ2+i|q|28iε2B4+2λq+iqx8iε2C42λq+iqx8iε2A4+2iλ2i|q|2)} \right),\tag{27b}$()

    View in Article

    $ A4=λ412|q|2λ2+i4(qqxqxq)λ+18(3q2q2+qqxx+qqxxqxqx),B4=iqλ312qxλ2i4(qx,x+2q2q)λ+18(qxxx+6qqqx),C4=iqλ312qxλ2+i4(qxx+2qq2)λ+18(qxxx+6qqqx).$(28)

    View in Article

    $ q^{[1]} = q^{[0]}-\dfrac{2i\Delta_1}{\varDelta_2}\,, $(29)

    View in Article

    $ q[0]=ceiρ,ρ=ax+bt, $(30)

    View in Article

    $ f_{1,1} = k_1c{\rm e}^{{\rm i}[\frac{\rho}{2}+\kappa(x,t)]}+{\rm i}k_2\left(\frac{a}{2}+h+\lambda_1\right){\rm e}^{{\rm i}[\frac{\rho}{2}-\kappa(x,t)]},\tag{31a}$()

    View in Article

    $ f_{1,2} \!=\! k_2c{\rm e}^{-{\rm i}[\frac{\rho}{2}+\kappa(x,t)]}\!+\!{\rm i}k_1\left(\frac{a}{2}\!+\!h\!+\!\lambda_1\right){\rm e}^{-{\rm i}[\frac{\rho}{2}-\kappa(x,t)]},\tag{31b}$()

    View in Article

    $ κ=h(x+dt),k1=eih(s1ε+s2ε2),k2=eih(s1ε+s2ε2),h=c2+(λ1+a2)2hR+ihI,d=2λ1a+ε2[a(a26c2)8λ13+4aλ12+(4c22a2)λ1]dR+ihI. $()

    View in Article

    $ q^{[1]} = c {\rm e}^{{\rm i}\rho} +\frac{2\eta\{\omega_1\cos(2G)-\omega_2\cosh(2F) - {\rm i}[(\omega_1-2c^2)\sin(2G) -\omega_3\sinh(2F)]\}{\rm e}^{{\rm i}\rho}}{\omega_1\cosh(2F)-\omega_2\cos(2G)}, $(32)

    View in Article

    $ ω1=c2+(hI+η)2+(ξ+hR+as)2,ω2=2c(hI+η),ω3=2c(ξ+hR+a2),F=hIx+(dRhI+dIhR)tk1x+w1t,G=hRx+(dRhRdIhI)tk2x+w2t,λ1=ξ+iη,$()

    View in Article

    $Vg=w1k1=dRhI+dIhRhI=8η2(a+2ξ)(1a2+2c2+4η2+4aξ12ξ2)a2+4c24η2+4aξ+4ξ2+D1+[a32a2ξa(1+6c2+4η24ξ2)+2ξ(1+2c2+12η24ξ2)](a2+4c24η2+4aξ+4ξ2+D1)a2+4c24η2+4aξ+4ξ2+D1,$(33)

    View in Article

    $Vp=w2k2=dRhRdIhIhR=4ξ(c2+6η22ξ2)[a3+2ξ2a2ξa(1+6c2+4η24ξ2)]+(1+a22c24η24aξ+12ξ2)(4c24η2+(a+2ξ)2)+D2a+2ξ,$(34)

    View in Article

    $D1=16η2(a+2ξ)2+[a2+4aξ+4(c2η2+ξ2)]2,D2=(4(cη)2+(a+2ξ)2)(4(c+η)2+(a+2ξ)2).$()

    View in Article

    $Vg=8η2(a+2ξ)(1a2+6c2+4aξ12ξ2)a2+4aξ+4ξ2+(a+2ξ)2(a2+16c2+4aξ+4ξ2)+[a32a2ξa(1+10c24ξ2)+2ξ(1+14c24ξ2)],$(35)

    View in Article

    $Vp=4ξ(7c22ξ2)[a3+2ξ2a2ξa(1+10c24ξ2)]+(1+a26c24aξ+12ξ2)((a+2ξ)2+(a+2ξ)2[16c2+(a+2ξ)2])a+2ξ.$(36)

    View in Article

    $ Vg=δ1δ2,Vp=δ3δ4, $(37)

    View in Article

    $δ1=2a4+a5+2a2[(2+a)2(20+4a+a2)15]a3[3+(2+a)2(20+4a+a2)]a{48+3[4+(2+a)2(20+4a+a2)]2[48+5(2+a)2(20+4a+a2)]}2{483[(2+a)2(20+4a+a2)4]+2[7(2+a)2(20+4a+a2)72]},$(38)

    View in Article

    $δ2=(2+a)2(20+4a+a2)44aa2,$(39)

    View in Article

    $δ3=a4807(2+a)2(20+4a+a2)+a2[(2+a)2(20+4a+a2)15]+4[37+3(2+a)2(20+4a+a2)]4a[(2+a)2(20+4a+a2)3],$(40)

    View in Article

    $ δ4=2(a+2). $(41)

    View in Article

    $ q_{\rm{rw}} = \left[c-\frac{4c\theta_1(\lambda_0-{\lambda_0}^2)(\theta_4+\alpha^*_1t)} {4c^2\theta_3\theta_4+\theta_1\theta_2+4c^2[\theta_4\alpha_1+\alpha^*_1(\theta_3+\alpha_1t)]t}\right] {\rm e}^{{\rm i}\rho(x,t)}, $(42)

    View in Article

    $ρ=ax+bt,b=(a412a2c2+6c4)ε2+2c2a2,θ1=4c2α1ta+2λ0+(ax+2λ0x+2i)α1+α2[a4ε2a2(1+6c2ε2)8ac2ε2λ0+4λ02(1+2c2ε24ε2λ02)]aa3ε2+6ac2ε22λ0+2a2ε2λ04c2ε2λ04aε2λ02+8ε2λ03,θ2=4c2α1ta+2λ0+α1(ax+2xλ02i)+α2[a2(a2ε26c2ε21)8ac2ε2λ0+λ02(4+8c2ε2)16ε2λ04]aa3ε2+6ac2ε2+2λ0(a2ε22c2ε21)4aε2λ02+8ε2λ03,θ3=α1x+α2[a3ε22a2ε2λ0+a(4ε2λ0216c2ε2)+2(λ0+2c2ε2λ04ε2λ03)]a3ε22a2ε2λ0+a(4ε2λ0216c2ε2)+2(λ0+2c2ε2λ04ε2λ03),θ4=α1x+α2[a(a2ε26c2ε21)+λ0(22a2ε2+4c2ε2)+4aε2λ028ε2λ03]a(a2ε26c2ε21)+λ0(22a2ε2+4c2ε2)+4aε2λ028ε2λ03. $()

    View in Article

    Min Li, Bo-Ting Wang, Tao Xu, Juan-Juan Shui. Study on the generation mechanism of bright and dark solitary waves and rogue wave for a fourth-order dispersive nonlinear Schrödinger equation[J]. Acta Physica Sinica, 2020, 69(1): 010502-1
    Download Citation