Min Li, Bo-Ting Wang, Tao Xu, Juan-Juan Shui. Study on the generation mechanism of bright and dark solitary waves and rogue wave for a fourth-order dispersive nonlinear Schrödinger equation [J]. Acta Physica Sinica, 2020, 69(1): 010502-1

Search by keywords or author
- Acta Physica Sinica
- Vol. 69, Issue 1, 010502-1 (2020)

Fig. 1. Phase portraits of System (15 ): (a) Homoclinic orbits (β 1 = –1/10, β 2 = 1/18); (b) heteroclinic orbits (β 1 = 1, β 2 = –5/9).
系统(15 )的相位图 (a)同宿轨道(β 1 = –1/10, β 2 = 1/18); (b) 异宿轨道(β 1 = 1, β 2 = –5/9)

Fig. 2. (a) Propagation of bright solitary wave via Solution (22 ) with the parameters chosen as α 1 = 1, α 2 = 2, α 3 = 1, α 4 = 8, α 5 = 2, α 6 = 6, α 7 = 4, α 8 = 6, c = 1, K = 1,
= 51/16, ε = 1, a = 1; (b) propagation of dark solitary wave via Solution (25 ) with the parameters chosen as α 1 = –1, α 2 = 2, α 3 = 1, α 4 = –8, α 5 = –2, α 6 = –6, α 7 = –4, α 8 = 6, c = –7, K = 1,
= –123/32, ε = 1, a = 1.
(a)由明孤立波解(22 )式描述的明孤立波传输图形, 其中参数选取为 α 1 = 1, α 2 = 2, α 3 = 1, α 4 = 8, α 5 = 2,α 6 = 6, α 7 = 4, α 8 = 6, c = 1, K = 1,
= 51/16, ε = 1, a = 1; (b) 由暗孤立波解(25 )式描述的暗孤立波传输图形, 其中参数选取为α 1 = –1, α 2 = 2, α 3 = 1, α 4 = –8, α 5 = –2, α 6 = –6, α 7 = –4, α 8 = 6, c = –7, K = 1,
= –123/32, ε = 1, a = 1

Fig. 3. The propagation of one breather via Solution (32 ) with the parameters chosen as
,
,
and
.
解(32 )式描述的一阶呼吸子的动力学演化, 其中参数选取为
,
,
和

Fig. 4. Group velocity
(red-solid line) and phase velocity
(blue-dot line) of the breather
呼吸子的群速度
(红实线)和相速度
(蓝虚线)随参数a 的变化关系

Fig. 5. The propagation of first-order rogue wave via Solution (42 ) with the parameters chosen as
,
,
,
,
and
.
解(42 )式描述的一阶怪波的动力学演化, 其中参数选取为
,
,
,
,
和

Fig. 6. Variation of the group velocity
(red-solid line) and phase velocity
(blue-dot line) about the amplitude parameter c with the parameters chosen as
,
and
.
(a) 群速度
随振幅参数c 的变化(红实线)和(b)相速度
随振幅参数c 的变化(蓝点线), 其中参数选取为
,
和
Set citation alerts for the article
Please enter your email address