• Laser & Optoelectronics Progress
  • Vol. 60, Issue 13, 1314003 (2023)
Hao Zhao, Jixin Yang*, Xiaoqi Hu, Rui Wang, and Yunjie Bi
Author Affiliations
  • Additive Manufacturing Research Institute, Ji Hua Laboratory, Foshan 528200, Guangdong, China
  • show less
    DOI: 10.3788/LOP230785 Cite this Article Set citation alerts
    Hao Zhao, Jixin Yang, Xiaoqi Hu, Rui Wang, Yunjie Bi. Research on Powder Transport Behavior of Laser Cladding Under Vertical and Inclined Working Conditions[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1314003 Copy Citation Text show less
    References

    [1] DebRoy T, Wei H L, Zoback J S et al. Additive manufacturing of metallic components-process, structure, and properties[J]. Progress in Materials Science, 92, 112-224(2018).

    [2] Zhang Y, Wu L M, Guo X Y et al. Additive manufacturing of metallic materials: a review[J]. Journal of Materials Engineering and Performance, 27, 1-13(2018).

    [3] Lee H, Lim C H J, Low M J et al. Lasers in additive manufacturing: a review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 307-322(2017).

    [4] Svetlizky D, Das M, Zheng B L et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges, and applications[J]. Materials Today, 49, 271-295(2021).

    [5] Liang W X, Yang Y, Jin K et al. Morphology prediction of a coaxial powder feeding multichannel laser cladding layer based on the response surface[J]. Laser & Optoelectronics Progress, 59, 0114012(2022).

    [6] Chen F, Song C H, Yang Y Q et al. Surface quality and mechanical properties of 316L stainless steel manufactured by powder feeding laser additive and milling subtractive hybrid manufacturing[J]. Laser & Optoelectronics Progress, 59, 0114009(2022).

    [7] Zhang A F, Li D C, Liang S D et al. The development of laser additive manufacturing of high-performance metal parts[J]. Aeronautical Manufacturing Technology, 59, 16-22(2016).

    [8] Zhang J C, Shi S H, Gong Y Q et al. Research progress in laser cladding technology[J]. Surface Technology, 49, 1-11(2020).

    [9] Guner A, Bidart P, Jiménez A et al. Nozzle designs in powder-based direct laser deposition: a review[J]. International Journal of Precision Engineering and Manufacturing, 23, 1077-1094(2022).

    [10] Su P, Li H, Yang J Y et al. Optimal design of structure parameters of the coaxial powder feeding nozzle for laser cladding[J]. Journal of Physics: Conference Series, 1798, 012050(2021).

    [11] Wang W, Cai L, Yang G et al. Research on the coaxial powder-feeding nozzle for laser cladding[J]. Chinese Journal of Lasers, 39, 0403003(2012).

    [12] Liu H, Yu G, He X L et al. The effect of powder properties on the convergence of the powder stream in coaxial laser cladding[J]. Chinese Journal of Lasers, 40, 0503008(2013).

    [13] Guo G, Zhao D M, Wurikaixi A et al. A study of the influence of the convergence characteristics of the laser cladding powder flow field on the cladding layer height[J/OL]. Laser & Optoelectronics Progress, 1-10. http://kns.cnki.net/kcms/detail/31.1690.tn.20230104.1354.047.html

    [14] Zhang Z Y, Lei Y Y, Wang S et al. Numerical simulation of the flow field of the coaxial powder-feeding nozzle for heterogeneous materials[J]. Journal of Machine Design, 38, 57-66(2021).

    [15] Ferreira E, Dal M, Colin C et al. Experimental and numerical analyzes of gas/powder flow for different LMD nozzles[J]. Metals, 10, 667(2020).

    [16] Zhang A F, Li D C, Zhou Z M et al. Numerical simulation of the powder flow field on a coaxial powder nozzle in laser metal direct manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 49, 853-859(2010).

    [17] Zhang A F, Li D C, Zhang L F et al. 3D numerical simulation of coaxial powder feeding nozzle powder convergence characteristics[J]. Infrared and Laser Engineering, 40, 859-863(2011).

    [18] Lu Q P, Zhang A F, Li D C et al. Numerical simulation and experimental research on gas-carrier coaxial powder nozzle[J]. Chinese Journal of Lasers, 37, 3162-3167(2010).

    [19] Liu H, Hao J B, Yu G et al. A numerical study of metallic powder flow in coaxial laser cladding[J]. Journal of Applied Fluid Mechanics, 9, 2247-2256(2016).

    [20] Takemura S, Koike R, Kakinuma Y et al. The design of a powder nozzle for high resource efficiency in directed energy deposition based on computational fluid dynamics simulation[J]. The International Journal of Advanced Manufacturing Technology, 105, 4107-4121(2019).

    [21] Li L Q, Huang Y C, Zou C Y et al. A numerical study of the powder stream characteristics of a coaxial laser metal deposition nozzle[J]. Crystals, 11, 282(2021).

    [22] Liu Q P, Yang K, Gao Y H et al. An analytical study of powder stream geometry in laser-based direct energy deposition process with a continuous coaxial nozzle[J]. Crystals, 11, 1306(2021).

    [23] Zekovic S, Dwivedi R, Kovacevic R. Numerical simulation and experimental investigation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition[J]. International Journal of Machine Tools and Manufacture, 47, 112-123(2007).

    [24] Xia Y L, Huang Z, Chen H N et al. Numerical simulation and experimental investigation of powder transport of a new-type annular coaxial nozzle[J]. The International Journal of Advanced Manufacturing Technology, 115, 2353-2364(2021).

    [25] Batchelor G K[M]. An introduction to fluid dynamics(1967).

    [26] Voller V R, Prakash C. A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 30, 1709-1719(1987).

    [27] Shih T H, Liou W, Shabbir A et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 24, 227-238(1995).

    [28] Lateb M, Masson C, Stathopoulos T et al. Comparison of various types of k-ε models for pollutant emissions around a two-building configuration[J]. Journal of Wind Engineering & Industrial Aerodynamics, 115, 9-21(2013).

    [29] Jayawickrama T R, Haugen N E L, Babler M U et al. The effect of Stefan flow on the drag coefficient of spherical particles in a gas flow[J]. International Journal of Multiphase Flow, 117, 130-137(2019).

    Hao Zhao, Jixin Yang, Xiaoqi Hu, Rui Wang, Yunjie Bi. Research on Powder Transport Behavior of Laser Cladding Under Vertical and Inclined Working Conditions[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1314003
    Download Citation